ПРЕССЫ ВИНТОВЫЕ

Параметры и размеры. Нормы точности

Издание официальное

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москва

УДК 621.979.15: 006.354 Группа Г83

межгосударственный стандарт

ПРЕССЫ ВИНТОВЫЕ

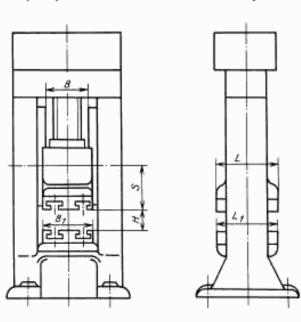
Параметры и размеры. Нормы точности

ГОСТ 713—88

Screw presses.

Parameters and dimensions. Norms of accuracy

OKII 38 2180


Дата введения 01.07.89

Настоящий стандарт распространяется на винтовые прессы общего назначения, предназначенные для выполнения различных операций горячей и холодной штамповки металлов, изготовляемых для нужд народного хозяйства и экспорта.

Стандарт не распространяется на винтовые прессы с муфтовым приводом,

1. ПАРАМЕТРЫ И РАЗМЕРЫ

Параметры и размеры прессов должны соответствовать указанным на черт. 1 и в табл. 1.

Черт. 1

Примечание. Чертеж не определяет конструкцию.

Издание официальное

Перепечатка воспрешена

© Издательство стандартов, 1988 © ИПК Издательство стандартов, 2002

С. 2 ГОСТ 713-88

Таблица 1

				ı		ı											
Нанменование параметра и размера									Норма								
Номинальное усилие, МН (тс)	0,4 (40)		0,63 (63)	1.0	(100)	1,6	(160)	2,5 (2,5 (250)	4,0 (400)	(00)	6,3 (630)	30)	10.0 (1000)	(000)	16,0 (1600)	(009)
Допустимое усилие, МН (тс)	0,63 (63)		1,0 (100)	1.6	(16-(160)	2,5	(250)	4,0 (400)	400)	6,3 (630)	30)	16,0 (1000)	(000	16,0 (1600)	(009)	25,0 (2500)	(200)
Эффективная номинальная энергия, кДж (кгс · м), не менее	8,0	1,25 (125) (160)	3) (250)	3,15	(500)	(630)	(630) (1000)	12,5 (1250)	20,0	25.0	40.0	(5000) (8000)	80,0	(10000) (16000)		200,0 (20000) (315,0	315,0
Наибольший ход ползуна S, мм, не менее	.200		230		260		320	4	400	460).	520	_	580	0	640	
Частота холов ползуна при наибольшем холе, минт ¹ , не менее	42	36 40	35.	38	34	36.	32	34	28	30	22	2.5	18	20.	14	91	12
Расстояние между, направля- ющим в свету В, мм, не менее	360		400	. *.	450		500	. 35	560	670		800	_	1000	00	1180	00
Размер ползуна L, мм не менее	350		390		440		900	8	990	0630		800.		1000	00	1180	. 00
Размера стола, мм, не менес: L_1	450		500 450		260 500	04,	650 580	77	750 670	875 775	10.10	1000		1180	99	1400	0.00
Высота патампа <i>H</i> , мм, не менее	190		210		250		320	4	420	450		:500	_	560	0	099	
Нижний вызляцватель: усилие, МН (тс), не менее- наибольший хол, мм	0.04 (4)		0,06 (6)	0,0	0,08 (8)	0,12	0,12 (12)	0,16 (16)	(16) IS	0,20 (20)	20)	0.25 (25) 1.25	.53	0,32 (32)	(32)	0,45 (45)	(45)
Улельная масса К _ч , т/МН, не более	1,8	9,1 5,1	5,1	1,35	1,15	1,35	1,15	1.2	1.1	1,45	1,2	1,4	1,2	1,4	1,15	1,35	1,1
Удельный расход энергии <i>К</i> э, кВт - мин/кДж, не более	0,115 0,1	0,125 0,09	001'0 560'	0,100 0,085	5 0,100	0,100 0,085	0,100	0,085	0,100	0,085	0600	0,085	0,090	0,085	060'0	0,075	0,085
Комплексный показатель про- изводительности Ка, кДж/ман, не менее	3,3 4,9	9 5,9	0,6	10,2		15,1 17,3	25,8	28,1	42,7	49,2	74,2	84,3	971	157	234	292	425

Примечания:

- Номинальную эффективную энергию прессов рассчитывают по приведенной массе подвижных частей и их линейной скорости в конце хода ползуна.
- Значения частоты ходов ползуна при наибольшем ходе приведены без учета работы нижнего выталкивателя.
 - Удельную массу (К_м), т/МН, рассчитывают по формуле

$$K_{M} = \frac{M}{P_{X}(1 + K_{1}S) \cdot (1 + K_{2}H) \cdot (1 + K_{3}F_{c}) \cdot K_{4}},$$
 (1)

где M — масса пресса, т;

 P_{x} — усилие холодного (жесткого) удара, МН;

 K_1 — коэффициент, характеризующий зависимость массы пресса от значения хода ползуна;

S — наибольший ход ползуна, м:

К₂ — коэффициент, характеризующий зависимость массы пресса от значения минимальной высоты штампа;

 \hat{H} — минимальная высота штампа, м;

К₁ — коэффициент, характеризующий зависимость массы пресса от значения площади стола;

 F_c — плошаль стола, м²;

 K_4 — коэффициент, учитывающий механические свойства материала станины.

Для расчетов удельной массы следует пользоваться значениями коэффициентов K_1 , K_2 , K_3 , K_4 , указанными в табл. 2.

Таблица 2

			Значение ко	эффициента		
Номинальное усилие, МН (тс)					K_4	
	К,	К2	K ₃	Сталь легированная	Стальное литье	Серый чугун
0,4 (40) 0,63 (63) 1,0 (100) 1,6 (160)	0,025	0,015	0,25			
2,5 (250) 4,0 (400) 6,3 (630)	0,020	0,012	0,15	1,0	1,2	1,9
10.0 (1000) 16.0 (1600) 25.0 (2500)	0,015	0,010	0,10			
40,0 (4000) 63,0 (6300) 100,0 (10000)	0,012	0,010	0;05			

4. Удельный расход энергии (К₂), кВт · мин/кДж, рассчитывают по формуле

$$K_3 = \frac{N}{Tn}$$
, (2)

где N — средняя цикловая мощность электродвигателя привода пресса; кВт;

Т — эффективная номинальная энергия, к Дж;

и — частота хода ползуна при наибольшем ходе, мин-1;

Комплексный показатель производительности (K_n), кДж/мин, рассчитывают по формуле

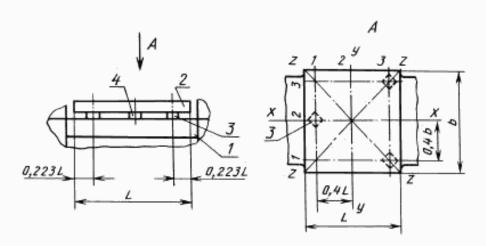
$$K_{II} = \eta_{II} T n_{II} \kappa_{II}, \qquad (3)$$

где $\eta_a - K\Pi Д$ процесса деформирования;

 $n_{\rm H}$ — частота используемых ходов ползуна, мин—1;

 $\kappa_{\rm p}$ — коэффициент роста производительности.

Данные для расчета комплексного показателя производительности приведены в приложении 1.



C. 4 FOCT 713-88

- Параметры и размеры винтовых прессов усилием 25 . . . 100 МН (2500 . . , 10000 тс) приведены в приложении 2.
- По требованию потребителя винтовые прессы допускается изготавливать с верхним выталкивателем и уменьшенной частотой ходов ползуна при наибольшем ходе.
- 1.4. По требованию потребителя винтовые прессы должны быть снабжены устройством для регулирования энергии удара, устройством для программирования числа последовательных ударов, автоматическим устройством для сдува окалины, устройством для смазки штампов, устройством для установки и снятия штампов, устройством автоматической загрузки заготовок и удаления поковок.
- Система управления винтовых прессов должна обеспечивать возможность встраивания их в автоматические линии и роботизированные технологические комплексы.

2. НОРМЫ ТОЧНОСТИ

- Общие требования при проведении проверок норм точности по ГОСТ 15961.
- Базовыми поверхностями для проверки точности пресса являются поверхности стола и ползуна.
- 2.2. Для выполнения проверок норм точности применяют средства измерения, приведенные в приложении 3.
- 2.3. В случае, если конструктивные особенности пресса не позволяют проводить измерения на длине, к которой отнесен допуск, то последний должен быть пересчитан на наибольшую возможную длину измерения по ГОСТ 24643.
 - 2.4. Устанавливают следующие проверки и нормы точности прессов.
 - 2.4.1. Плоскостность поверхности стола и нижней поверхности ползуна (черт. 2, табл. 3)

Черт, 2

Таблица 3

56.M

Длина процеряемой поверхности	Допуск плоскостности, не более
До 400 включ.	0,04
Св. 400 » 630 »	0,06
» 630 » 1000 »	0,08
» 1000 » 1600 »	0,10
» 1600 » 2500 »	0,16
» 2500	0,20

Примечание. Выпуклость не допускается.

Таблица 4

 0.10°

0.160.25

0,32

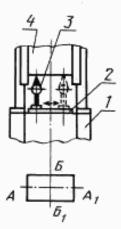
0,40

0.50

0.60

Метод проверки

На опорную поверхность стола 1 (черт, 2) устанавливают поверочную линейку 2 на плоскопараллельные концевые меры длины 3 или плоскопараллельные прокладки равной высоты в точках наименьшего прогиба. Щупом 4 проверяют в различных направлениях отклонение расстояний между поверхностью стола и нижней поверхностью линейки.


Проверку проводят в направлении X—X по линиям измерения 1, 2 и 3, в направлении Y—Y по линиям измерения 1, 2 и 3, а также в диагональных направлениях Z-Z.

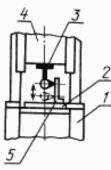
Отклонение от плоскостности определяют как разность наибольшего и наименьшего значений толщины шупов, проходящих между поверхностью стола и нижней поверхностью линейки, и оно не должно превышать значений, указанных в табл. 3.

Аналогично контролируют плоскостность нижней поверхности ползуна.

Проверку плоскостности нижней поверхности ползуна проводят до установки его на пресс.

Паралзельность нижней поверхности ползуна поверхности стола (черт. 3, табл. 4)

Размер ползуна Допуск парадлельности, не более До 400 включ. CB. 400 630 630 № 800 800 » 1000 1000 » 1250 1250 × 1600 1600


MM

Черт. 3

Метод проверки

На опорную поверхность стола I (черт. 3) кладут поверочную линейку 2, на которую устанавливают на специальной стойке индикатор 3 так, чтобы его измерительный наконечник касался нижней поверхности ползуна 4.

Отклонение от параллельности проверяют при наибольшем и наименьшем расстояниях между столом и ползуном в двух взаимно перпендикулярных направлениях АА, и ББ,

Черт. 4

Отклонение от параллельности определяют по разности показаний индикатора в крайних точках проверки, и оно не должно превышать значений, указанных в табл. 4.

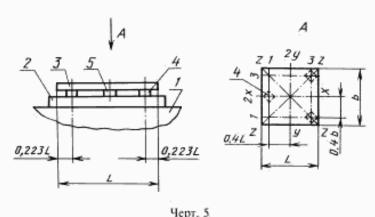
2.4.3. Перпендикулярность хода ползуна к поверхности стола (черт. 4, табл. 5)

Таблица 5

-Ma	IM .
Наибольший ход ползуна	Допуск перпендикулярности, не более
До 315 включ. Св. 315 * 400 * * 400 * 500 * * 500 * 630 * * 630 * 800 *	0,08 0,10 0,16 0,25 0,32 0,40

Метод проверки

На опорную поверхность стола *I* (черт. 4) кладут поверочную линейку *2*, на которую устанавливают угольник *5*. Индикатор *3* крепят к ползуну *4* так, чтобы его измерительный наконечник касался измерительной поверхности угольника.


Отклонение от перпендикулярности проверяют в двух взаимно перпендикулярных направлениях AA_1 и BB_1 .

Отклонение от перпендикулярности определяют по разности наибольшего и наименьшего показаний индикатора на длине хода ползуна, и оно не должно превышать значений, указанных в таби. 5

Для исключения погрешности от перпендикулярности измерительных поверхностей угольника следует снимать показания по двум измерениям с поворотом угольника на 180°. За результат измерения принимают среднее арифметическое двух измерений.

П р и м е ч а н и е. Проверка 2.4.2 и 2.4.3 проводят при минимальных зазорах в направляющих, обеспечивающих движение ползуна, и при включенных устройствах, уравновешивающих массу ползуна.

2.4.4. Плоскостность верхней и нижней поверхностей подштамповой плиты (черт. 5, табл. 6)

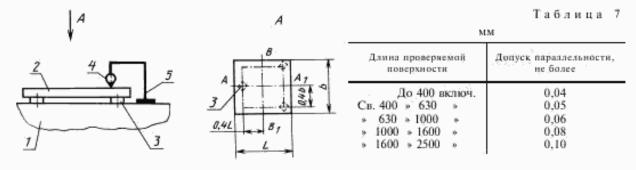
MM	
Длина проверяемой поверхности	Допуск пласкостности, не более
До 400 включ. Св. 400 + 630 -> • 630 > 1000 -> • 1000 + 1600 +> • 1600 -> 2500 ->	0,04 0,05 0,06 0,08 0,10

Таблица

Примечание. Выпуклость не допускается.

Метод проверки

На поверхность поверочной плиты *I* (черт. 5) устанавливают подштамповую плиту 2. На поверхность подштамповой плиты устанавливают поверочную линейку 3 на плоскопараллельные концевые меры длины 4 или плоскопараллельные прокладки равной высоты в точках наименьшего прогиба. Щупом 5 проверяют в различных направлениях отклонение расстояний между поверхностью подштамповой плиты и нижней поверхностью поверочной линейки.


Проверку проводят в направлении X-X по линиям измерения $I,\ 2$ и $3,\ a$ также в направлениях Z-Z.

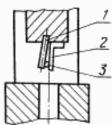
Отклонение от плоскостности определяют как разность наибольшего и наименьшего значений толщины шупов, проходящих между поверхностью подштамповой плиты и нижней поверхностью линейки, и оно не должно превышать значений, указанных в табл. 6.

Проверку плоскостности верхней и нижней поверхностей подштамповой плиты проводят до установки ее на пресс.

2.4.5. Параллельность верхней и нижней поверхностей подштамповой плиты (черт. 6, табл. 7)

Черг. б

Метод проверки


На поверхность поверочной плиты I (черт. 6) устанавливают подштамповую плиту 2 на плоскопараллельные концевые меры длины 3 или плоскопараллельные прокладки равной высоты. Схема расположения концевых мер (прокладок) указана на черт; 6. Индикатор 4 крепят на стойке 5, установленной на поверочной плите так, чтобы его измерительный наконечник касался верхней поверхности плиты.

Отклонение от параллельности измеряют в двух взаимно перпендикулярных направлениях АА1

Отклонение от параллельности определяют как наибольшую разность показаний индикатора в крайних точках проверки, и оно не должно превышать значений, указанных в табл. 7.

Проверку парадлельности верхней и нижней поверхностей подштамповой плиты проводят до установки ее на пресс.

2.4.6. Перпендикулярность оси отверстия в ползуне под хвостовик штампа к нижней поверхности ползуна (черт. 7, табл. 8)

Черт. 7

			а	о.л	и	ц	23	
444								

M	.M
Длина проверяемой поверхности	Допуск перпендикулярности, не более
До 100 ключ. Св. 100 » 160 « » 160 « 250 » » 250 » 400 »	0,05 0,06 0,08 0,10

В отверстие ползуна для крепления штампа вставляют цилиндрическую оправку І (черт. 7). На нижнюю поверхность ползуна устанавливают угольник 2 так, чтобы его вертикальная измерительная поверхность касалась образующей оправки. Щупом 3 измеряют зазор между оправкой и измерительной поверхностью угольника.

Метод проверки

Отклонение от перпендикулярности определяют величиной наибольшего зазора, полученного при измерениях по всей длине окружности оправки, и оно не должно превышать значений, указанных в табл. 8.

Проверку допускается проводить до установки ползуна на пресс.

ДАННЫЕ ДЛЯ ОПРЕДЕЛЕНИЯ КОМПЛЕКСНОГО ПОКАЗАТЕЛЯ ПРОИЗВОДИТЕЛЬНОСТИ

- КПД процесса деформирования принимают в зависимости от выполняемой операции:
- 0,45 . . . 0,5 при чеканке-калибровке;
- 0,6 . . . 0,7 при объемной штамповке;
- 0,75 . . . 0,85 при осадке и высадке.
- 2. Коэффициент роста производительности $\kappa_{\rm p}$ должен быть:
- 1,0 при отсутствии средств механизации и автоматизации;
- не менее 1,5 при наличии средств механизации и автоматизации.
- Частота используемых ходов ползуна n_n в зависимости от номинального усилия и эффективной номинальной энергии должна соответствовать значениям, приведенным в табл. 9.

Таблица 9

Номинальное усилие, МН (тс)	0,4	(40)	0,63	(63)	1,0 ((100)	1,6 (160)	2,5 (250)
Эффективная номи- нальная энергия, кДж, не менее	0,80	1,25	1,60	2,50	3,15	5,00	6,30	10,00	12,5	20,0
Частота используемых ходов ползуна $n_{\rm H}$, мин $^{-1}$	3,70	3,50	3,30	3,20	2,90	2,70	2,45	2,30	2,00	1,90

Продолжение табл. 9

Номинальное усилие, МН (тс)	4,0 ((400)	6,3 ((630)	19;0 (1000)	16,0 (1600)
Эффективная номи- нальная энергия, кДж, не менее	25	40	50	. 80	100	160	200	315
Частота используемых ходов ползуна $n_{\rm B}$, мин $^{-1}$	1,75	1,65	1,50	1,40	1,40	1,30	1,30	1,20

Продолжение табл. 9

Номинальное усилие, МН (тс)	25.0 ((2500)	40,0	(4000)	63,0 ((6300).	100,0	(10000)
Эффективная номи- нальная энергия, кДж, не менее	400	630	800	1250	1600	2500	3200	5000
Частота используемых ходов ползуна $n_{\rm H}$, мин $^{-1}$	1,2	1,1	1,1	1,0.	1,0	0,9	0,9	0,8

Примечания:

- Значения частоты используемых ходов ползуна приведены без учета средств механизации и автоматизации.
 - 2. Показатели производительности, приведенные в табл. 1, рассчитаны при $\kappa_p = 1,5$ и $\eta_A = 0,75$.

ПРИЛОЖЕНИЕ 2 Рекомендуемое

ПАРАМЕТРЫ И РАЗМЕРЫ ВИНТОВЫХ ПРЕССОВ УСИЛИЕМ 25... 100 МН (2500...10000 тс)

Таблица 10

Наименование параметра и размера				Ho	рма			
Номинальное усилие, МН (тс)	. 25 (2	2500)	40 (4	4000)	63 (6	300)	100 (10000)
Допустимое усилие, МН (тс)	40 - (4	4060)	63 (6	5300)	100 (10000)	160 (16000)
Эффективная номинальная энергия, кДж (тс - м), не менее	400 (40)	630 (63)	800 (80)	1250 (125)	1600 (160)	2500 (250)	3200 (320)	5000 (500)
Наибольший ход ползуна S , мм, не менее	. 7	10	8	00	9(00	10	00
Частота ходов ползуна при наибольшем ходе, мин-1, не менее	. 15	10	12	8	10	7	8	.5
Расстояние между направляющими в свету B , мм, не менее	14	00	16	00	18	000	- 20	00
Размер ползуна L , мм, не менее	14	00	1,6	00	. 18	000	20	00
Размеры стола, мм, не менее L_1 B_1	1600 1400			00		00 00		00
Высота штампа H , мм, не менее	91	0Ó	12	:00 <u>.</u>	16	00	2000	
Нижний выталкиватель: усилие, МН (тс), не менее наибольший ход, мм		(55) 65		(70) 90		(85) 10		(100) 30
Удельная масса $K_{\rm M}$, т/МН, не более	1,30	.1,10	1,25	1,05	1,20	1,05	1,15	1,00
Удельный расход энергии K_3 , кВт мин/кДж, не более	0,070	0,080	0,065	0,075	0,060	0,070	0,055	0,065
Комплексный показатель про- изводительности K_n , кДж/мин, не менее	540	780	996	1400	1800	2530	3240	4500

ПРИЛОЖЕНИЕ З Рекомендуемое

ПЕРЕЧЕНЬ СРЕДСТВ ИЗМЕРЕНИЙ, ПРИМЕНЯЕМЫХ ПРИ ПРОВЕРКЕ НОРМ ТОЧНОСТИ ВИНТОВЫХ ПРЕССОВ

- Линейки поверочные типов ШД, ШП класса точности 1 по ГОСТ 8026.
- 2. Плоскопараллельные концевые меры длины класса точности 3 по ГОСТ 9038 или 5-го разряда.
- 3. Индикаторы многооборотные типа 1 МИГ по ГОСТ 9696.
- 4. Индикаторы часового типа класса точности 1 по ГОСТ 577.
- Угольники поверочные 90°-ные типа УШ, класса точности 1 по ГОСТ 3749.
- 6. Плиты поверочные класса точности 1 по ГОСТ 10905.

П р и м е ч а н и е. Допускается применение других средств измерения при условии обеспечения указанной точности измерений.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- РАЗРАБОТАН И ВНЕСЕН Министерством станкостроительной и инструментальной промышленности СССР
 - Государственным комитетом СССР по народному образованию
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 22.06.88 № 2058
- 3. Стандарт полностью соответствует СТ СЭВ 4488-84
- B3AMEH ΓΟCT 713—81, ΓΟCT 7209—79
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, приложения
FOCT 577—68	Приложение 3
FOCT 3749—77	Приложение 3
FOCT 8026—92	Приложение 3
FOCT 9038—90	Приложение 3
FOCT 9696—82	Приложение 3
FOCT 10905—86	Приложение 3
FOCT 15961—89	2.1
FOCT 24643—81	2.3

- 6. Ограничение срока действия снято по протоколу № 3—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 5-6—93)
- 7. ПЕРЕИЗДАНИЕ . Сентябрь 2002 г.

Редактор Р.Г. Товердовская Технический редактор О.Н. Власова Корректор А.С. Черноусова Компьютерная верстка А.Н. Золотаревой

Изл.: лиц. № 02354 от:14:07.2000. Сдано в набор [22.08.2002. Подписано в лечать 10:10.2002. Усл.печ.л. 1,40. Уч.-взядл. 1,15. Тираж 73 экз; С 7744. Зак. 292.

ИПК Издательство стандартов, 107076 Москва, Колодезный пер., 14. http://www.standards.ru e-mail: info®standards.ru Набрано и отпечатано в ИПК Издательство стандартов

