

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

2-ЭТИЛГЕКСАНОЛ ТЕХНИЧЕСКИЙ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

ГОСТ 26624—85 (СТ СЭВ 4608—84)

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ Москва

РАЗРАБОТАН Министерством нефтелерерабатывающей и нефтехимической промышленности СССР

ИСПОЛНИТЕЛИ

Б. Л. Воробьев, Ф. Н. Лисунов, К. А. Алексеева, Г. П. Прокопенко, Т. Е. Краева

ВНЕСЕН Министерством нефтеперерабатывающей и нефтехимической промышленности СССР

Зам. министра Н. И. Сорокин

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 30 сентября 1985 г. № 3176

УДК 661.722:006.354 Группа Л25

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

2-ЭТИЛГЕКСАНОЛ ТЕХНИЧЕСКИЙ

Технические условия

Technical 2-ethylhexanol. Specifications

ΓΟCT 26624₋₈₅

[CT C3B 4608-84]

OKII 24 2283

Постановлением Государственного комитета СССР по стандартам от 30 сентября 1985 г. № 3176 срок действия установлен

c 01.01.86

до 01.01.94

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на технический 2-этилгексанол, получаемый из н-масляного альдегида, н-бутилового спирта, уксусного альдегида и предназначенный для синтеза пластификаторов, стабилизаторов, присадок к смазочным маслам, для использования в качестве растворителя.

Формула С₈Н₁₈О.

Молекулярная масса (по международным атомным массам

1971 r.) — 130,22.

Стандарт полностью соответствует СТ СЭВ 4608—84 и СТ СЭВ 4609—84, СТ СЭВ 4610—84, СТ СЭВ 4611—84, СТ СЭВ 4612—84 в части методов определения массовой доли 2-этилгексанола, кислотного числа, массовой доли непредельных соединений и массовой доли альдегидов и кетонов.

Показатели технического уровня, установленные настоящим стандартом, предусмотрены для высшей и первой категорий качества.

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Технический 2-этилгексанол должен быть изготовлен в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

Издание официальное

Перепечатка воспрещена

 \star

© Издательство стандартов, 1986

Стр. 2 ГОСТ 26624---85

1.2. По физико-химическим показателям технический 2-этилгексанол должен соответствовать нормам, указанным в таблице.

	Нор			
Наименование показателя	Высшая категория качества	Первая категория качества	Метод анализа	
	Высший сорт ОКП 24 2283 0220	1-й сорт ОКП 24 2283 0230		
1. Цветность в единицах платиново-кобальтовой шкалы, не более 2. Плотность при 20 °C, г/см ³	10 0,831—0,833	10 0,830—0,833	По ГОСТ 14871—76 По ГОСТ 18995.1—73,	
3. Массовая доля 2-этил- гексанола, %, не менее 4. Массовая доля 2-этил-	99,0	98,0	разд. 1 По п. 4.3	
-4-метилпентанола, %, не более	0,5	1,5	По п. 4.3	
5. Кислотное число, мг КОН/г, не более 6. Массовая доля альде-гидов и кетонов в пересчете на 2-этилгексаналь, %,	0,03	0,05	По п. 4.4	
не более 7. Массовая доля непредельных соединений в пересчете на 2-этилгексеналь,	0,05	0,1	По п. 4.5	
%, не более	0,02	0,05	По п. 4.6	
8. Массовая д оля водн %, не более	0,1	0,2	По ГОСТ 14870—77, разд. 2 и п. 4.7 нас- тоящего стандарта	

Примечание. Норма по показателю 3 для продукта (обоих сортов), получаемого из уксусного альдегида, должна быть не менее 99,5 %, а показатель 4 не нормируется.

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

2.1. Технический 2-этилгексанол по степени воздействия на организм относится к 4-му классу опасности (ГОСТ 12.1.007—76).

При превышении предельно допустимой концентрации пары 2-этилгексанола могут оказывать раздражающее действие на кожу и слизистые оболочки дыхательных путей; 2-этилгексанол кумулятивными свойствами не обладает.

Предельно допустимая концентрация паров 2-этилгексанола в воздухе рабочей зоны — 50 мг/м³ (ГОСТ 12.1.005—76). Попадание 2-этилгексанола в питьевую воду не допускается.

2.2. Разлитый 2-этилгексанол необходимо смыть водой в дренажную емкость. Небольшие количества разлитого продукта необходимо собрать ветошью в герметичную тару с последующим уничтожением в установленном порядке. Работы по уборке следует проводить при включенной вентиляции с применением индивидуальных средств защиты.

2.3. 2-этилгексанол в воздушной среде и сточных водах в присутствии других веществ данного производства и под влиянием

природных факторов токсичные соединения не образует.

2.4. 2-этилгексанол относится к горючим веществам (ГОСТ 12.1.044—84).

Температура вспышки в закрытом тигле по ГОСТ 6356—75— не менее 83 °C, температура воспламенения по ГОСТ 12.1.044—84— не ниже 85 °C, температура самовоспламенения по ГОСТ 12.1.044—84— не ниже 289 °C, концентрационные пределы воспламенения: нижний— не ниже 1,03 об. %, верхний— не выше 8,46 об. %, температурные пределы воспламенения (по ГОСТ 12.1.044—84): нижний— не ниже 79 °C, верхний— не выше 121 °C.

2.5. При работе и хранении 2-этилгексанола следует применять герметичные аппараты, оборудование и тару.

Помещения, в которых проводят работы с 2-этилгексанолом, должны быть обеспечены приточно-вытяжной вентиляцией, а оборудование — местными отсосами.

2.6. При сливо-наливных операциях необходимо строго соблю-

дать правила защиты от статического электричества.

2.7. В помещениях, где хранится или используется 2-этилгексанол, запрещается применение открытого огня.

2.8. Для тушения горящего 2-этилгексанола следует использовать тонкораспыленную воду, химическую и воздушно-механическую пену.

Для тушения небольших очагов загорания применяют ручные пенные огнетушители ОП-5, ОВП-5, ОВП-10 или углекислотные огнетушители ОУ-2, ОУ-5, ОУ-8.

3. ПРАВИЛА ПРИЕМКИ

3.1. Технический 2-этилгексанол принимают партиями. Партией считают любое количество 2-этилгексанола, однородного по показателям качества и оформленного одним документом о качестве, содержащим:

наименование предприятия-изготовителя и его товарный знак; наименование продукта, его сорт;

номер партии;

массу нетто партии;

количество мест в партии;

дату изготовления продукта;

результаты проведенных анализов или подтверждение о соответствии качества продукта требованиям настоящего стандарта; обозначение настоящего стандарта.

3.2. Объем выборки — по ГОСТ 2517—80.

3.3. При получении неудовлетворительных результатов анализа хотя бы по одному из показателей по нему проводят повторный анализ пробы, отобранной от удвоенной выборки.

Результаты повторного анализа распространяются на всю пар-

тию.

4. МЕТОДЫ АНАЛИЗА

4.1. Методы отбора проб — по ГОСТ 2517—80. Из цистерн точечные пробы отбирают пробоотборником от верхнего, среднего и нижнего слоя продукта, из бочек — чистой стеклянной трубкой с оттянутым концом, погружая ее до дна.

4.2. Точечные пробы соединяют и тщательно перемешивают.

Объем объединенной пробы должен быть не менее 1 дм3.

4.3. Определение массовой доли 2-этилгексано-

ла и 2-этил-4-метилпентанола

Метод заключается в газохроматографическом разделении основного вещества и примесей с помощью пламенно-ионизационного детектора и определении их методом внутреннего эталона.

4.3.1. Аппаратура и реактивы

Хроматограф газовый с пламенно-ионизационным детектором.

Микрошприц вместимостью 1, 5 или 10 мм³.

Колонка хроматографическая внутренним диаметром 3—4 мм

и длиной 2—3 м.

Носитель твердый — хромосорб-W, хроматон-N, инертон или динохром-H с частицами размером 0,160—0,200 или 0,200—0,315 мм.

Фаза неподвижная — полиэтиленгликоль (ПЭГ) марки М-20000

или полиэтиленгликольадипинат (ПЭГА).

Газ-носитель — гелий, азот по ГОСТ 9293—74 или аргон по ГОСТ 10157—79.

Воздух сжатый для питания приборов.

Водород технический по ГОСТ 3022—80.

Хлороформ технический по ГОСТ 20015—74 или хлороформ

фармакопейный.

Эталон внутренний: н-нониловый спирт и н-амиловый спирт (для 2-этилгексанола, получаемого из уксусного альдегида) с массовой долей основного вещества не менее 98%.

Шкаф сушильный, обеспечивающий нагрев до 300 °C.

Линейка измерительная металлическая по ГОСТ 427—75.

Интегратор.

Лупа измерительная с ценой деления 0,1 мм.

Чашка выпарительная по ГОСТ 9147—80.

Набор сит с сетками по ГОСТ 3584—73.

Баня водяная.

Весы лабораторные аналитические с наибольшим пределом взвешивания 200 г.

4.3.2. Подготовка к анализу

4.3.2.1. Приготовление насадки

Твердый носитель сушат в сушильном шкафу при 150-160 °C в течение 5-6 ч, охлаждают и просеивают через сито, отбирая фракции с частицами размером 0,160-0,200 мм или 0,200-0,315 мм.

На твердый носитель наносят неподвижную фазу в количестве 10% от массы носителя, для этого 5,0 г неподвижной фазы растворяют в 150 см³ хлороформа и добавляют 50,0 г твердого носителя. Хлороформ медленно выпаривают при 60-80 °C при непрерывном перемешивании.

Хроматографическую колонку заполняют приготовленной насадкой и кондиционируют при продувке газом-носителем. Кондиционирование начинают при 100 °C. Конечная температура кондиционирования должна превышать рабочую на 15—20 °C. Температуру повышают постепенно, кондиционирование проводят до стабилизации нулевой линии при максимальной чувствительности прибора, но не менее 16 ч.

Допускается применение готовых твердых носителей с нанесенными жидкими фазами.

Вывод газового хроматографа на рабочий режим осуществляют в соответствии с инструкцией, прилагаемой к прибору.

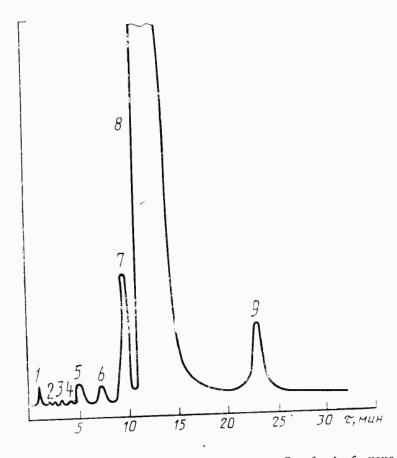
Условия хроматографического разделения должны обеспечивать определение примесей при их массовой доле в продукте не менее 0,01 %.

4.3.3. Проведение анализа

4.3.3.1. Анализируемый продукт взвешивают (результат записывают с точностью до четвертого десятичного знака), добавляют 0.5-2% внутреннего эталона, тщательно перемешивают и вводят микрошприцем в испаритель хроматографа объем пробы, установленный опытным путем.

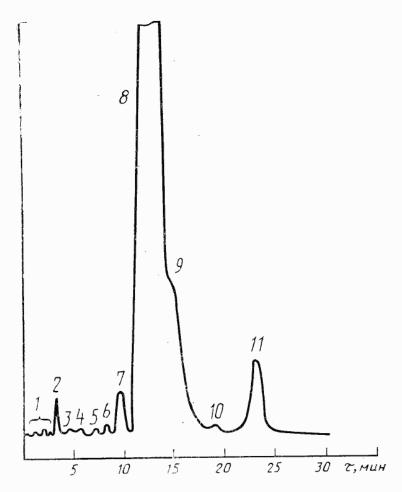
Порядок выхода компонентов указан на типовых хроматограммах (черт. 1—3).

4.3.3.2. Режим работы хроматографа


1emi	repa:	гура 1	г е рмос	тата колоні	ΚИ	, C.		
В	изо	терми	ческом	и режиме				130140
В	реж	киме	програ	аммировани	Я			80—180
Скоро	СТЬ	подъ	ема те	емпературы	,	°С/мин		2-3

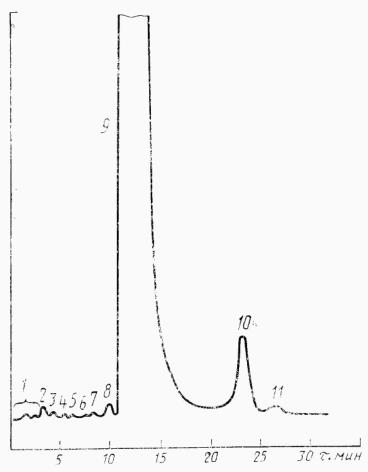
Стр. 6 ГОСТ 26624-85

Температура испарителя, °С						250 ± 10
Temneparypa uchaphrenn,	•	•	-			30—60
Расход газа-носителя, см ³ /мин	•	•	•	•	•	0.5 - 4.0
Объем пробы, мм ³		•		•	•	200—240.
Скорость лвижения диаграммно	Й	ленты,	мм/ч	•		200-240.


Типовая хроматограмма технического 2-этилгексанола, получаемого из н-масляного альдегида

1—парафиновые углеводоролы C_8 ; 2, 4, 6—неидентифицированные примеси; 3— μ -бутанол; 5—2-этилгексаналь; 7—2-этил-4-метилпентанол; 8—2-этилгексанол; 9— μ -нониловый спирт (внутренний эталон)

Черт. 1


Типовая хроматограмма технического 2-этилгексанола, получаемого из н-бутилового спирта

1—парафиновые углеводороды C_8 ; 2—n-бутанол; 3, 5—неидентифицированные примеси; 4—2-этилгексаналь; 6—2-этилгексеналь; 7—2-этил-4-метилпентанол; 8—2-этилгексанол; 9, 10—2-этилгексенолы; 11—n-нониловый спирт (внутренний эталон)

Черт. 2

Типовая хроматограмма технического 2-этилгексанола, получаемого из уксусного альдегида

1—парафиновые углеводороды C_8 ; 2—n-бутанол; 3, 6, 11—неидентифицированные примеси; 4—2-этилгексаналь; 5—2-этилбутанол; 7—2-этилгексеналь; 8—2-этилгексанол; 9—2-этилгексанол; 10—нониловый спирт (внутренний эталон) Черт. 3

4.3.4. Обработка результатов

На хроматограмме измеряют площади пиков внутреннего эталона и всех примесей.

Площадь пика каждого компонента (S) в квадратных миллиметрах вычисляют по формуле

$$S=h \cdot b$$
,

где h — высота пика, мм;

b — ширина пика, мм.

Ширину пика измеряют измерительной лупой на середине его высоты от внешней линии правой стороны до внутренней линии ле-вой стороны.

Высота пика соответствует отрезку от нулевой линии хромато-

граммы до вершины пика. Высоту измеряют линейкой.

Массовую долю каждой примеси и 2-этил-4-метилпентанола (X_i) в процентах вычисляют по формуле

$$X_i = \frac{m_1 \cdot S \cdot 100}{m \cdot S_1} ,$$

где m_1 — масса внутреннего эталона, г;

m — масса навески анализируемого продукта, г;

S — площадь пика определяемой примеси, мм 2 ;

 S_1 — площадь пика внутреннего эталона, мм².

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать 10% от среднего значения определяемой величины при доверительной вероятности $P\!=\!0.95$.

Массовую долю 2-этилгексанола (X) в процентах вычисляют

по формуле

$$X = 100 - (\Sigma X_{i} + X_{B}),$$

где ΣX_i — сумма массовых долей всех примесей, %; $X_{\rm B}$ — массовая доля воды в 2-этилгексаноле, %.

4.4. Определение кислотного числа

Метод заключается в титровании анализируемой пробы раствором гидроокиси калия в присутствии фенолфталеина.

4.4.1. Посуда, реактивы и растворы

Пипетка исполнения 2 по ГОСТ 20292—74 вместимостью 50 см³.

Колба коническая по ГОСТ 25336—82 вместимостью 250 см³.

Бюретка исполнения 7 по ГОСТ 20292-74 вместимостью $10~{\rm cm^3}.$

Цилиндр исполнения 1 или 3 по ГОСТ 1770—74 вместимостью

Спирт этиловый ректификованный технический по ГОСТ 18300—72 высшего сорта.

Калия гидроокись по ГОСТ 24363-80, раствор концентрации

 $c \text{ (KOH)} = 0.05 \text{ моль/дм}^3 \text{ (0.05 H.)}.$

Фенолфталеин (индикатор) по ГОСТ 5850—72, 1%-ный спиртовой раствор.

4.4.2. Проведение анализа

В коническую колбу вносят 25 см³ этилового спирта, 2—3 капли раствора фенолфталенна и нейтрализуют раствором гидроокиси калия до слабо-розовой окраски. Затем к раствору добавляют 50 см³ анализируемого 2-этилгексанола и тщательно перемешивают. Полученный раствор титруют в присутствии 3—5 капель фенолфталенна раствором гидроокиси калия до появления слаборозовой окраски, устойчивой в течение 30 с.

4.4.3. Обработка результатов

Кислотное число (X_1) в миллиграммах КОН на грамм 2-этилгексанола вычисляют по формуле

$$X_1 = \frac{V \cdot 2,805}{50 \cdot \rho} ,$$

где V — объем раствора гидроокиси калия концентрации точно 0,05 моль/дм³, израсходованный на титрование анализируемой пробы, см³;

2,805 — масса гидроокиси калия, соответствующая 1 см³ раствора гидроокиси калия концентрации точно 0,05 моль/дм³,

50 — объем 2-этилгексанола, взятый для анализа, см³;

плотность 2-этилгексанола, г/см³.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать 10% от среднего значения определяемой величины при доверительной вероятности $P\!=\!0.95$.

4.5. Определение массовой доли альдегидов и кетонов

Метод заключается в реакции присутствующих в анализируемой пробе альдегидов и кетонов с солянокислым гидроксиламином при кипячении, в результате которой образуются оксим и соляная кислота.

Выделившуюся соляную кислоту титруют раствором гидроокиси натрия.

4.5.1. Приборы, реактивы и растворы

рН-метр лабораторный.

Электроды каломельный или хлорсеребряный и стеклянный.

Мешалка магнитная.

Стакан типа В по ГОСТ 25336—82 вместимостью 150 см³.

 Π ипетка исполнения 2 по Γ OCT 20292—74 вместимостью 50 см³.

Бюретка исполнения 7 по ГОСТ 20292—74 вместимостью 10 см³. Колба исполнения 2 по ГОСТ 1770—74 вместимостью 1000 см³. Колба Kн-1—250—29/32 TC по ГОСТ 25336—82.

Цилиндр исполнения 1 по ГОСТ 1770—74 вместимостью 10 см³. Холодильник ХШ-1—300—29/32 XC по ГОСТ 25336—82.

Баня водяная.

Спирт этиловый ректификованный технический по ГОСТ 18300—72 высшего сорта.

Натрия гидроокись по ГОСТ 4328—77, раствор концентрации c (NaOH)=0,1 моль/дм³ (0,1 н.), готовят по ГОСТ 25794.1—83.

Вода дистиллированная по ГОСТ 6709—72.

Гидроксиламин солянокислый по ГОСТ 5456—79, спиртовой раствор, готовят следующим образом: 7,0 г солянокислого гидроксиламина растворяют в 100 см³ дистиллированной воды и доводят объем раствора этиловым спиртом до 1 дм³.

4.5.2. Проведение анализа

В коническую колбу наливают 50 см³ раствора солянокислого гидроксиламина и 50 см³ анализируемого 2-этилгексанола. Содержимое колбы перемешивают и нагревают на кипящей водяной бане с обратным холодильником в течение 30 мин. Затем содержимое колбы охлаждают, стенки холодильника ополаскивают 10 см³ дистиллированной воды, колбу отсоединяют от холодильника. Содержимое колбы переносят в стакан для титрования, стенки колбы ополаскивают 10 см³ дистиллированной воды и вливают в тот же стакан.

Одновременно проводят контрольный опыт (без 2-этилгексанола) и измеряют при помощи рН-метра рН контрольной пробы.

Содержимое стакана титруют потенциометрически раствором гидроокиси натрия до рН контрольной пробы, непрерывно перемешивая магнитной мешалкой.

4.5.3. Обработка результатов

Массовую долю альдегидов и кетонов в пересчете на 2-этилгексаналь (X_2) в процентах вычисляют по формуле

$$X_2 = \frac{V \cdot 0,0128 \cdot 100}{50 \cdot \rho}$$
 ,

где V — объем раствора гидроокиси натрия концентрации точно 0,1 моль/дм³, израсходованный на титрование, см³;

0,0128 — масса 2-этилгексаналя, соответствующая 1 см³ раствора гидроокиси натрия концентрации точно 0,1 моль/дм³, г;

50 — объем 2-этилгексанола, взятый для анализа, см³;

ρ — плотность 2-этилгексанола, г/см3.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать 10% от среднего значения определяемой величины при доверительной вероятности P=0.95.

4.6. Определение массовой доли **ж**епредельных соединений

Методы заключаются во взаимодействии брома с ненасыщенными соединениями, содержащимися в анализируемой пробе, и определении расхода брома.

4.6.1. Аппаратура, реактивы и растворы

Бюретка исполнения 7 по ГОСТ 20292—74 вместимостью 10 см³.

Стр. 12 ГОСТ 26624-85

Пипетки исполнения 1 или 2 по ГОСТ 20292—74 вместимостью 2 и 25 см³.

Колба исполнения 2 по ГОСТ 1770—74 вместимостью 1000 см³. Колба Кн-1—250—19/26 ТС и Кн-1—100—19/26 ТС по ГОСТ 25336—82.

Цилиндры исполнения 1 или 3 по ГОСТ 1770—74 вместимостью 5, 10, 25 и 100 см³.

Баня ледяная.

Кислота соляная по ГОСТ 3118—77.

Кислота уксусная по ГОСТ 61—75, ледяная, х. ч.

Калий йодистый по ГОСТ 4232—74, 5%-ный раствор.

Калий бромистый по ГОСТ 4160—74.

Калий бромноватокислый по ГОСТ 4457—74.

Натрий серноватистокислый (тиосульфат натрия) чистый, раствор концентрации $c(^{1}/_{2}\mathrm{Na}_{2}\mathrm{S}_{2}\mathrm{O}_{3}\cdot5\mathrm{H}_{2}\mathrm{O})=0{,}05$ моль/дм³ (0,05 н.), готовят по ГОСТ 25794.2—83.

Крахмал растворимый по ГОСТ 10163—76, 0,5%-ный раствор,

свежеприготовленный.

Вода дистиллированная по ГОСТ 6709—72 свежеперегнанная.

Растворитель — углерод четыреххлористый по ГОСТ 20288—74, спирт этиловый ректификованный технический по ГОСТ 18300—72 высшего сорта или хлороформ технический по ГОСТ 20015—74.

Раствор бромид-броматный концентрации c (1/6 KBчO₃) =

=0.05 моль/дм³ (0.05 н.), готовят по ГОСТ 25794.2—83.

4.6.2. Метод обратного титрования

4.6.2.1. Проведение анализа

В коническую колбу вместимостью 250 см³ помещают 25 см³ уксусной кислоты, 10 см³ растворителя, 2 см³ соляной кислоты и 25 см³ анализируемого 2-этилгексанола. Содержимое колбы тщательно перемешивают и оставляют на 10 мин при температуре не выше 0°С. Затем в колбу добавляют 3 см³ бромид-броматного раствора, быстро закрывают ее пробкой и встряхивают содержимое в течение 1 мин. Слегка приоткрывают пробку и быстро вливают в колбу 5 см³ йодистого калия, закрывают пробкой и перемешивают содержимое колбы энергичным встряхиванием. Добавляют 100 см³ воды и опять энергично встряхивают в течение 1 мин, затем содержимое колбы титруют раствором тиосульфата натрия, добавляя в конце титрования 1 см³ раствора крахмала.

Параллельно в тех же условиях и с теми же объемами растворов

проводят контрольный опыт (без 2-этилгексанола).

4.6.2.2. Обработка результатов

Массовую долю непредельных соединений в пересчете на 2-этилгексеналь (X_3) в процентах вычисляют по формуле

$$X_3 = \frac{(V - V_1) \cdot 0,00315 \cdot 100}{25 \cdot \rho}$$
 ,

где V — объем раствора тиосульфата натрия концентрации точно 0.05 моль/дм³, израсходованный на титрование в контрольном опыте, см³;

 V_1 — объем раствора тиосульфата натрия концентрации точно $0,05\,$ моль/дм 3 , израсходованный на титрование анализи-

руемой пробы, см³;

0,00315 — масса 2-этилгексеналя, соответствующая 1 см³ бромидброматного раствора концентрации точно 0,05 моль/дм³,

25 — объем 2-этилгексанола, взятый для анализа, см³;

о — плотность 2-этилгексанола, г/см³.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать 10% от среднего значения определяемой величины при доверительной вероятности $P\!=\!0.95$.

4.6.3. Метод прямого титрования

4.6.3.1. Проведение анализа

В коническую колбу вместимостью 100 см³ помещают 25 см³ анализируемого 2-этилгексанола, добавляют 25 см³ этилового спирта, 2 см³ соляной кислоты и охлаждают содержимое колбы в ледяной бане в течение 3 мин.

Затем прибавляют из бюретки при перемешивании бромидброматный раствор до появления желтого окрашивания, не исчезающего в течение 1 мин. Параллельно проводят контрольный опыт (без 2-этилгексанола).

4.6.3.2. Обработка результатов

Массовую долю непредельных соединений в пересчете на 2-этилгексеналь (X_3) в процентах вычисляют по формуле

$$X_3 = \frac{(V_2 - V_3) \cdot 0,00315 \cdot 100}{25 \cdot \rho} ,$$

где V_2 — объем бромид-броматного раствора концентрации точно $0,05\,$ моль/дм 3 , израсходованный на титрование анализируемой пробы, см 3 ;

 V_3 — объем бромид-броматного раствора концентрации точно $0.05\,$ моль/дм 3 , израсходованный на титрование в конт-

рольном опыте, см³;

0,00315 — масса 2-этилгексеналя, соответствующая 1 см³ бромидброматного раствора концентрации точно 0,05 моль/дм³, г;

25 — объем 2-этилгексанола, взятый для анализа, см³;

ρ — плотность 2-этилгексанола, г/см³.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать 10% от среднего

значения определяемой величины при доверительной вероятности P = 0.95.

- 4.6.4. При разногласиях в оценке массовой доли непредельных соединений анализ проводят методом обратного титрования.
- 4.7. При разногласиях в оценке массовой доли воды анализ проводят методом электрометрического титрования.

5. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 5.1. Технический 2-этилгексанол упаковывают в стальные бочки типа I по ГОСТ 13950—84 или по ГОСТ 6247—79 вместимостью 200 дм³.
- 5.2. Бочки должны быть герметично укупорены и опломбированы металлической пломбой по ГОСТ 18677—73 или ГОСТ 18680—73.
- 5.3. Транспортная маркировка по ГОСТ 14192—77 с указанием основных, дополнительных, информационных надписей и манипуляционного знака «Боится нагрева», а также знака опасности по ГОСТ 19433—81, класс 9, подкласс 9.2, категория 921.

Дополнительно на тару наносят следующие надписи:

наименование продукта;

номер партии;

дату изготовления;

обозначение настоящего стандарта.

5.4. 2-этилгексанол транспортируют в автоцистернах или в специальных железнодорожных цистернах грузоотправителя с верхним сливом или универсальным сливным прибором.

Степень (уровень) заполнения цистерн вычисляют с учетом полного использования вместимости цистерн и объемного расширения продукта при возможном перепаде температур в пути следования.

Загрузочный люк цистерны закрывают крышкой с уплотнительной прокладкой и пломбируют металлической пломбой по ГОСТ 18677—78 или ГОСТ 18680—73.

- 5.5. 2-этилгексанол, упакованный в бочки, транспортируют повагонно в крытых железнодорожных вагонах и автомобильным транспортом.
- 5.6. 2-этилгексанол транспортируют в соответствии с правилами перевозки грузов, действующими на соответствующих видах транспорта.
- 5.7. 2-этилгексанол хранят в специально оборудованных металлических резервуарах. Бочки с продуктом хранят в крытых складских помещениях, под навесом или на складской площадке с соблюдением правил хранения горючих веществ.

6. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 6.1. Изготовитель гарантирует соответствие технического 2этилгексанола требованиям настоящего стандарта при соблюдении условий хранения и транспортирования. 6.2. Гарантийный срок хранения— 1 год со дня изготовления.

Редактор *Н. П. Щукина* Технический редактор *О. Н. Никитина* Корректор *Н. Б. Шелкова*

Сдано в наб. 22.10.85 Подп. к печ. 12.12.85 1,0 усл. печ. л. 1,0 усл. кр.-отт. 0,94 уч.-изд. л. Тир. 16000 Цена 5 коп.

Ордена «Знак Почета» Издательство стандартов, 123840, Москва, ГСП, Новопресненский пер., 3. Калужская типография стандартов, ул. Московская, 256. Зак. 2952

Маменение № 1 ГОСТ 26624—85 2-Этилгексанол технический, Технические усло-**888**

Утверждено и введено в действие Постановлением Государственного СССР по управлению качеством продукции и стандартам от 13.12.90 № 3123 Дата введения 01.07.91

Вводная часть. Последянй абзац изложить в новой редакции: «Требования настоящего стандарта являются обязательными».

Пункт 1.2. Таблица. Головка. Исключить слова: «Высшая категория качест-

ва». «Первая категория качества»;

, рафа «Наименование показателя». Показатель 1 изложить в новой редакции: Цветность по платиново-кобальтовой шкале, единицы Хазена, не более».

Пункт 2.1. Третий абзац. Заменить ссылку: ГОСТ 12.1.005-76 на ГОСТ 12.1.005—88.

Пункт 2.4. Заменять ссылку: ГОСТ 12.1.044-84 на ГОСТ 12.1.044-89. Пункты 3.2, 4.1. Заменоть ссылку: ГОСТ 2517-80 на ГОСТ 2517-85.

Пункт 4.3. Заменить слово: «примесей» на «примесей, их регистрации».

Пункт 4.3.1. Десятый абзац изложить в новой редакции: «Эталок внутревмий: и-нониловый спирт или и-амиловый спирт с массовой долей основного веидество не менее 98 %»;

свестнадцатый абзац. Заменить осылку: ГОСТ 3584-73 на ГОСТ 6613-86. Пункты 4.3.1, 4.6.1. Заменить ссылку: ГОСТ 20015-74 на ГОСТ 20015-88.

Пункт 4.3.3.1. Чертеж 3. Подрисуночная подпись. Заменить слова: «8--2этилгексанол» на «8-2-этилгексенол».

Пункт 4.4.1. Третий абзац изложить в новой редакции: «Бюретка 7-2-10

или 6-2-5 по ГОСТ 20292-74»,

последний абвац изложить в новой редакции: «Фенолфталени (индикатор),

спиртовой раствор с массовой долей 1 %».

Пункты 4.3.3.1, 4.5.1, 4.6.1. Заменить ссылку: ГОСТ 18300-72 на ГОСТ 18300—87:

Пункт 4.5.1. Шестой абзац изложить в новой редакции: «Бюретка 7—2—10

или 6-2-5 по ГОСТ 20292-74».

Пункт 4.6.1. Первый абзац изложить в новой редакции: «Бюретка 7-2-10

или 6-2-5 по ГОСТ 20292-74»;

девятый, двенадцатый, тринадцатый абзацы изложить в новой редакции:

«Калий йодистый по ГОСТ 4232—74, раствор с массовой долей 5 %.

сериоватистокислый (натрий тиосульфат) 5-водный по ГОСТ 27068-86, раствор концентрацин c (Na₃S₂O₃·5H₂O) = 0.05 моль/дм³ (0.05 н.), готовят по ГОСТ 25794.2-83.

Крахмал растворимый по ГОСТ 10163-76, раствор с массовой долей 0.5 %,

свежеприготовленный».

«подиласс 9.2, категория 921» на «подкласс Пункт 5.3. Заменить слова: 9.1, классификационный шифр 9123»;

заменить ссылку: ГОСТ 19433--81 на ГОСТ 19433--88.

(MYC № 3 1991 г.)