межгосударственный стандарт

МАСЛА НЕФТЯНЫЕ

ГОСТ 7822—75

Метод определения растворенной воды

Petroleum oils. Method of dissolved water determination. Взамен ГОСТ 7822—55

OKCTY 0209

Постановлением Государственного комитета стандартов Совета Министров СССР от 24 октября 1975 г. № 2683 дата введения установлена 01.01.77

Постановлением Госстандарта от 28.11.91 № 1834 снято ограничение срока действия

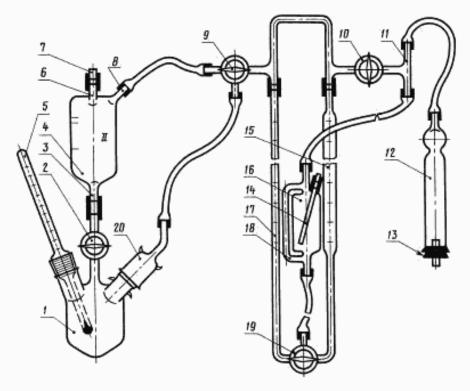
Настоящий стандарт распространяется на электроизоляционные (трансформаторные, кабельные, конденсаторные) масла и масла специального назначения, не содержащие эмульсионную воду, и устанавливает метод определения массовой доли растворенной воды.

Сущность метода заключается во взаимодействии гидрида кальция с растворенной водой, измерении объема выделившегося при этом газа, вычислении объема водорода, соответствующего окончанию реакции, и массовой доли растворенной воды.

Метод определения массовой доли растворенной воды применяется для контроля качества электроизоляционных масел и масел специального назначения в процессе их осушки, заливки и эксплуатации.

1. АППАРАТУРА, РЕАКТИВЫ И МАТЕРИАЛЫ

1.1. Для определения массовой доли растворенной воды применяют: прибор типа ПВН (см. чертеж); термометр КШ 14 (23—5+30) 0,1-60 или КШ 14 (23+30+60) 0,1-60 по ГОСТ 28498—90; барометр-анероид с ценой деления 1,33 гПа (1 мм рт. ст.); кальций хлористый кристаллический, ч., по НТД; гидрид кальция; смазку вакуумную; масло трансформаторное по ГОСТ 982—80.


Издание официальное

Перепечатка воспрешена

*

Издание с Изменениями № 1, 2, утвержденными в марте 1982 г., октябре 1984 г. (ИУС 6—82, 1—85). 27

Прибор для количественного определения массовой доли растворенной воды

I — сосуд I; 2, 10 — одноходовые краны; 3, 8 — отводы; 4 — сосуд II; 5 — термометр; 6 — трубка для ввода масла;
 7 — заглушка; 9, 19 — трехходовые краны; 11 — тройник; 12 — осущитель; 13 — пробка с отверстием и стеклянной трубкой; 14 — трубка для залива масла; 15, 17 — бюретки; 16 — уравнительная склянка; 18 — сравнительная трубка уравнительной склянки; 20 — крышка

(Измененная редакция, Изм. № 1, 2).

2. ПОДГОТОВКА К ИСПЫТАНИЮ

- 2.1. Температура в помещении, в котором проводится испытание, должна быть 15—30 °С, колебание температуры за время испытания не должно превышать 1 °С. Относительная влажность воздуха в помещении, в котором проводится испытание, должна быть 45—75 %.
- 2.2. Испытуемое масло выдерживают не менее 30 мин в помещении, в котором проводят испытание, до приобретения маслом температуры окружающей среды без непосредственного воздействия солнечных лучей.
- 2.3. Краны и шлифы смазывают вакуумной смазкой. Бюретки 15 и 17 и уравнительную склянку 16 заполняют через трубку 14 недегазированным маловязким маслом в количестве около 70 см³. Осущитель 12 заполняют свежепрокаленным хлористым кальцием.
- 2.4. Прибор в собранном виде проверяют на герметичность: кран 2 устанавливают в положение, соединяющее сосуды I и II; кран 9 в положение, сообщающее сосуды I и II с бюретками 15 и 17; кран 10 в положение, сообщающее бюретки 15 и 17 с атмосферой; кран 19 в положение, при котором бюретка 15 отсоединена, а бюретка 17 присоединена к уравнительной склянке; уравнительную склянку 16 устанавливают в верхнее положение, при котором уровень масла в бюретке 17 и сравнительной трубке 18 находится на нулевой отметке; перекрывают кран 10. Уравнительную склянку 16 опускают вниз до положения, при котором уровень масла в сравнительной трубке установится против последнего деления бюретки, при этом масло в бюретке опускается до некоторого уровня. Этот уровень должен сохраняться постоянным 15 мин, в противном случае следует улучшить герметичность прибора.

2.5. Объем сосуда I с присоединенными к нему трубками определяют только на вновь смонтированном приборе следующим образом: операцию выполняют по п. 2.4 при таких положениях кранов 2 и 9, чтобы от бюреток был отключен сосуд II, а сосуд I — присоединен. Затем измеряют объем масла в бюретке, вытесненного воздухом.

Допускается определять объем сосуда I непосредственным заполнением его жидкостью до крана 9и измерением этой жидкости. Объем сосуда любым из этих способов определяют для данного прибора один раз.

Объем сосуда I с присоединенными к нему трубками (V) в сантиметрах кубических вычисляют по формуле

$$V = v \cdot \frac{\frac{P_{s}}{P_{ss}}}{1 - \frac{v}{v_{s}}}$$

где v — объем масла в бюретке, вытесненный газом, см³;

 P_{a} — атмосферное давление во время испытания, Па (мм рт. ст.);

 $P_{\rm u}$ — давление столба масла, соответствующего градуированной части бюретки, Па (мм рт. ст.);

v₀ — объем градуированной части бюретки, см³.

Давление столба масла по всей длине градуированной части бюретки ($P_{_{\mathrm{M}}}$) в паскалях вычисляют по формуле

$$P_{u} = l_{0} \cdot \rho_{u} \cdot 9.81$$

где l_0 — длина градуированной части бюретки, м;

р_и — плотность маловязкого масла в бюретке при температуре испытания, кг/м³.

(Измененная редакция, Изм. № 1, 2).

3. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

- Сосуд II промывают 50 см³ испытуемого масла для удаления влаги от предыдущего опыта.
 Сосуды I и II соединяют с атмосферой.
- 3.2. Масло из сосуда 11 через кран 2 сливают в сосуд 1, ставят заглушку 7 и отключают сосуд 11 от сосуда 1 краном 2.
- 3.3. В сосуд II помещают 120 см³ испытуемого масла через трубку 6, которую затем закрывают заглушкой 7.
- 3.4. Открывают крышку 20 сосуда I и помещают в него предварительно размельченный гидрид кальция в количестве 0,1 см³ при испытании осущенного масла или 1 см³ при испытании неосущенного масла. Затем из сосуда II в сосуд I сливают 10 см³ испытуемого масла для осущки сосуда I (промывка его не обязательна), закрывают крышку 20 при вращении и фиксируют это положение резиновым кольцом.

П р и м е ч а н и е. Осущенным считают масло, по массовой доле воды удовлетворяющее требованиям к маслам, заливаемым в конкретное электрооборудование.

(Измененная редакция, Изм. № 2).

- Уровень масла в бюретке 15 и уравнительной склянке 16 устанавливают на делении вблизи
 см³ и краном 10 отключают прибор от атмосферы.
- 3.6. Масло в сосуде II приводят в равновесие по растворенному воздуху с остальной частью объема сосуда. Для этого сосуды I и II периодически два раза в минуту встряхивают. Перед каждым встряхиванием уравнительную склянку 16 перемещают до совпадения уровней масла в бюретке и сравнительной трубке уравнительной склянки. Когда изменение уровня масла между встряхиванием станет менее 0,1 см³, краном 10 соединяют сосуд II при отсоединенном сосуде I и через кран 2 сливают масло из сосуда II до метки 100 см³ для удаления оставшегося дегазированного масла из отвода 3. Вновь изолируют сосуд II от атмосферы кранами 2 и 10. Бюретку 17 подключают к уравнительной склянке 16 краном 19 и отключают бюретку 15. Продолжают встряхивание сосудов I и II и наблюдение за изменением уровня масла в бюретке 17 и сравнительной трубке 18. Равновесие

считается достигнутым, если результаты пяти последовательных отсчетов уровня масла отличаются не более чем на 0.01 см³.

- При достижении равновесия открывают кран 10 и устанавливают уровень масла в бюретке и сравнительной трубке уравнительной склянки на нулевое деление.
- 3.8. Сосуд I соединяют с атмосферой поворотом крана 9 при отсоединенном сосуде II, закрывают кран 10 и устанавливают равновесие по п. 3.6.
- 3.9. Уровень масла в бюретке 17 устанавливают на нулевое деление, открывая кран 10 и перемещая уравнительную склянку 16. Соединяют сосуд II с атмосферой краном 9, отключают сосуд I и закрывают кран 10.
- Сосуды I, II и бюретку 17 соединяют краном 9 и соединяют с атмосферой краном 10.
 Кран 10 закрывают.

(Измененная редакция, Изм. № 1).

- 3.11. Масло из сосуда II сливают в сосуд 1 через кран 2. Если мениск масла в бюретке 17 по окончании слива масла возвратится к первоначальному делению, не дойдя до него лишь на 0,03 см³, выполняют следующий этап (в противном случае на короткое время открывают кран 10 и выравнивают мениски против нулевого деления бюретки).
- 3.12. Кран 2 закрывают, соединяют сосуд I и бюретку 17 краном 9, отключая сосуд II, и отмечают начало времени реакции, температуру и атмосферное давление в помещении. Сосуд I встряхивают 2—3 раза для ускорения реакции. Встряхивание повторяют каждую минуту в течение 45 мин. Выделяющийся газ собирают в бюретку 17, опуская перед каждым измерением уравнительную склянку до положения, когда уровни менисков в сравнительной трубке 18 и бюретке 17 совпадут. Каждые 5 мин записывают показания по бюретке и термометру перед очередным встряхиванием. По окончании испытания снимают крышку 20 и удаляют из сосуда масло любым способом. Осущитель 12 закрывают заглушкой с пробкой 13.

(Измененная редакция, Изм. № 2).

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

- 4.1. Результаты измерений с поправками на изменение температуры заносят в таблицу и строят график на основании данных таблицы. Пример записи результатов испытания и вычисления массовой доли воды приведен в приложении.
- 4.2. Поправку на изменение объема газа от температуры (а) в сантиметрах кубических на 0,1 "С вычисляют по формуле

$$a = \alpha \cdot \Delta t$$

где Δt — изменение температуры в сосуде 1, 0,1 °C.

Коэффициент а является постоянным для каждого прибора и вычисляется один раз.

$$\alpha = \frac{V - v_{_{M}}}{2730} + v_{_{M}} \cdot 72 \cdot 10^{-6},$$

где V — объем сосуда 1 с присоединенными к нему трубками, рассчитанный по п. 2.5, см³;

 v_{μ} — объем испытуемого масла в сосуде 1, см³;

2730 - коэффициент изменения объема воздуха на 0,1 °C;

- 72 · 10⁻⁶ коэффициент изменения объема масла на 0,1 °C.
- 4.3. Объем водорода ($U = \infty$), который выделился бы при бесконечной продолжительности опыта, определяют расчетным способом, согласно графику, построенному на основании данных таблицы (см. приложение).
 - 4.4. Массу воды (m) в испытуемом масле в миллиграммах вычисляют по формуле

$$m = 0.804 \cdot v_{-} \cdot K$$

- где v_{\perp} объем водорода, который выделился бы при бесконечной продолжительности опыта, см³:
- 0,804 стехиометрический коэффициент в реакции между водой и гидрид-кальцием с образованием водорода.

К - коэффициент, с помощью которого делается поправка на отличие температуры и давления от нормальных, вычисляют по формуле

$$K = \frac{273}{273 + t} \cdot \frac{P_x}{0,101} \,,$$

где t — температура в конце испытания, "С;

 P_a — атмосферное давление в конце испытания, МПа (мм рт. ст.). 4.1—4.4 (Измененная редакция, Изм. № 2).

4.5. Массу воды (w) в миллиграммах на дм3 вычисляют по формуле

$$w = \frac{1000 - m}{v'_{u}},$$

где m — масса воды, вычисленная по п. 4.4, мг;

у'м — объем испытуемого масла, см³.

(Измененная редакция, Изм. № 1, 2). 4.6. За результат испытания принимают среднее арифметическое двух последовательных определений, допускаемые расхождения между которыми не должны превышать значений, указанных в таблице.

Массовая доля растворенной воды в испытуемом масле, мг/дм ³	Допускаемое расхождение, мг/дм ³
До 20	1,5
Св. 20 до 50	6,0
* 50 * 100	10,0
* 100	-20,0

(Измененная редакция, Изм. № 2).

1. Пример записи результатов испытания (см. таблицу)

Время отсчета (т), мин	Температура (п), °С	Атмосферное давление в помещении, в котором проводится испытание, М Па (мм. рт. ст.)	Количество выделившегося газа, см ¹	Поправка на изменение объема таза от температуры (a), см ³	Объем выделившегося газа с учетом поправки (v), см ²	Отношение т мин/см ³
0 5 10 15 20 25 30 35 40 45	19,8 19,8 19,8 20,0 20,0 20,0 20,0 20,0 20,0 20,0	0,101 (760) 0,101 (760)	0 2,1 2,6 2,6 2,7 2,8 2,8 2,8 2,8 2,9	0 0 0,04 0,04 0,04 0,04 0,04 0,04 0,04	0 2,1 2,6 2,56 2,66 2,76 2,76 2,76 2,76 2,76 2,86	0 2,38 3,85 5,86 7,54 9,05 10,09 12,7 14,5 15,7

2. Пример расчета поправки на изменение объема газа от температуры (a). При $V = 160 \text{ см}^3$ и $\dot{v}_u = 120 \text{ см}^3$ вычисляют по п. 4.2 настоящего стандарта

$$\alpha \frac{160-120}{2730}$$
 + 120 · 72 · 10⁻⁶ = 0,022 см³ на 0,1 °C.

При $\Delta t = 0.2$ °C

$$a = \alpha \cdot \Delta t = 0.022 \cdot 2 = 0.044 \text{ cm}^3$$
.

(Измененная редакция, Изм. № 1).

 Пример расчета объема водорода (v_n), который выделился бы при бесконечной продолжительности опыта

При $\tau_1 = 5$ мин, $\tau_2 = 45$ мин

$$\left(\frac{\tau}{\dot{v}}\right) = 2.38 \text{ muH/cm}^3 \left(\frac{\tau}{\dot{v}}\right) = 15.7 \text{ muH/cm}^3$$

вычисляют по п. 4.3 настоящего стандарта

$$v_{\infty} = \frac{45-5}{15.7-2.38} = 3.0 \text{ cm}^3.$$

(Измененная редакция, Изм. № 2).

 Пример расчета количества воды (m) по п. 4.4 настоящего стандарта при t = 25 °C и P_n = 0,101 МПа (760 мм рт. ст.).

$$K = \frac{273}{273 + 25} \cdot \frac{0,101}{0,101} = 0,916$$
 и $m = 0,804 \cdot 3,0 - 0,916 = 2,21$ мг.

- 5. (Исключен, Изм. № 2).
- 6. Пример расчета массовой доли воды в граммах на 1 т испытуемого масла

$$w' = \frac{1000 \cdot m}{\rho_M \cdot v'_M} = \frac{1000}{0.88} \cdot \frac{2.21}{100} = 25.1 \text{ r/r},$$

где $\rho_{\rm M}$ — плотность испытуемого масла при температуре испытания, г/см³; $\nu\,'_{\rm M}=100$ — объем участвующего в реакции испытуемого масла, см³.

Пример расчета массовой доли воды в процентах

$$w''' = \frac{w'}{10000} = \frac{25.1}{10000} = 0.00251.$$

32

(Измененная редакция, Изм. № 2).