ОСНОВНЫЕ НОРМЫ ВЗАИМОЗАМЕНЯЕМОСТИ

ШПОНКИ КЛИНОВЫЕ НИЗКИЕ С ГОЛОВКОЙ И БЕЗ ГОЛОВКИ И ШПОНОЧНЫЕ ПАЗЫ

РАЗМЕРЫ И ДОПУСКИ

Издание официальное

ГОССТАНДАРТ РОССИИ Москва

Группа Г14

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Основные пормы взаимозаменяемости

шпонки клиновые низкие с головкой и без головки и шпоночные пазы

ГОСТ Р 50536—93

Размеры и допуски

Basic requirements for interchangeability. Thin taper keys with and without gib head and their corresponding keyways. Dimensions and tolerances

(HCO 2492-74)

OKCTY 0073

Дата введения

01.01.94

1. НАЗНАЧЕНИЕ

Настоящий стандарт устанавливает размерные характеристики низких клиновых шпонок с головкой и без головки (далее в тексте — шпонок) и соответствующих лысок или шпоночных пазов на валу и во втулке.

Стандарт устанавливает требования к материалу, из которого изготавливают шпонки и указывает соотношение между диаметром вала и сечением шпонки.

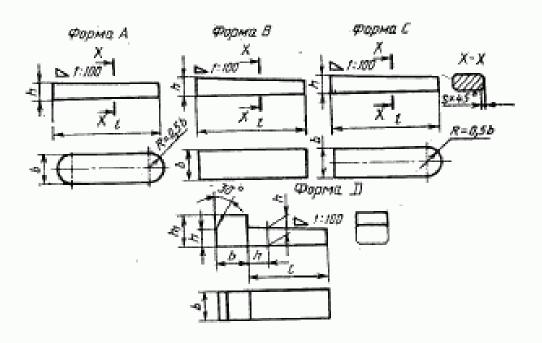
Дополнительные требования, необходимые для потребностей народного хозяйства, приведены в приложениях 1, 2 и 3.

Требования настоящего стандарта кроме приложений 2 и 3 являются обязательными.

2. ОБЛАСТЬ ПРИМЕНЕНИЯ

Стандарт применяют для цилиндрических концов валов, для специальных случаев как, например, установка их в тонкостенных деталях.

Стандарт применяют и для других концов валов,


В обычных случаях при передаче больших усилий следует применять клиновые шпонки и соответствующие им шпоночные назы по ГОСТ 24068.

Издание официальное

© Издательство стандартов, 1993.

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен без разрешения Госстандарта России

3. ФОРМА, РАЗМЕРЫ И ПРЕДЕЛЬНЫЕ ОТКЛОНЕНИЯ ШПОНОК

 $b = \text{димрина}; \ h = \text{высота}; \ s = \Phi \text{аска}; \ l = \text{длина}; \ h_1 = \text{высота} \in \text{головкой}$ Черт. 1

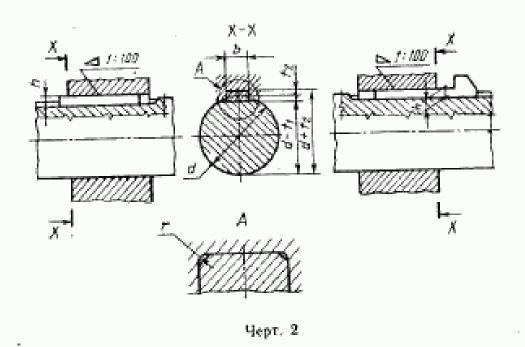
Таблица 1

-		

					,				
_		ь		h				3	
	Вомия.	npez. orkz. h9³	вожин.	пред. откл. h11 ⁸	мия,	watec.	от	• до	h,
	8 10	0 0,036	5 6	0 0,075	0,25 0,40	0.40 0,60	20 25	70 90	8 10
	12 14	0	6 6		0,40 0,40	0,60 0,60	32 36	125 140	10 10
_	16 18	-0,043	7 7		0,40 0,40	0,60 0,60	45 50	180 200	11 11
	20 22 25 28	_0,052	8 9 9 10	_0,090	0,60 0,60 0,60 0,60	0,80 0,80 0,80 0,80	56 63 70 80	220 250 280 320	12 14 14 16
4	32 36 40 45 50	0 0,062	11 12 14 16 18	0 0,110	0,60 1,00 1,00 1,00 1,00	0,80 1,20 1,20 1,20 1,20	90 100 125 140 160	360 400 400 400 400	18 20 22 25 28

Фаски синмают только на продольных кромках и на закругленных коицах швонок, остальные кромки притупляют.

4. МАТЕРИАЛ


Сталь, имеющая временное сопротивление разрыву не менее 590 Н/мм² (60 кгс/мм²), если по соглашению заинтересованных сторон не установлены другие значения.

² Дляны шлонок выбырают из ряда: 20; 22; 25; 28; 32; 36; 40; 45; 50; 56; 63; 70; 80; 90; 100; 110; 125; 140; 160; 180; 200; 220; 250; 280; 320; 360, н

³ Предельные отклонения h9 и h11 относятся только к размерам сечения швонки.

C. 4 FOCT P 50536-93

5. РАЗМЕРЫ И ПРЕДЕЛЬНЫЕ ОТКЛОНЕНИЯ ПАЗОВ ДЛЯ ШПОНОК И ЛЫСОК ВАЛОВ

454
400
725
田
100
10
45
+

s II	Jibecka * (sa.n)	Bucora 1 f	пред.	9 9	+	3,5	· .	5.55 5.55 4 0.25 5.05	7.5	625	
		-	MHS, HO	9,16		8,0	0,25	0,40 0,40 0,40	0,40	07.0	
		радияс	200.00	0,25	0 , 0	0,40	0,40	09.00 09.00 09.00 09.00	. 99	3888	F 10 1
	nas (bryaka)	47 . 140	пред. откл.		+0.1	0:		40,2	•		
×	Ппокочный	тлубива	помин.	1.7	64 64	କ୍ଷ୍ୟୁ କ୍ଷ୍ୟୁ	2 5 4 4	04 04 04 04 04 04 04 04 04 04 04 04 04 0	, 65°	0,4 R)	e 0
		вна ф	npeg, orka.	±0.098	+0,040	+0,120	+0,050	+0,149		+0.180	
		енефип	BOWHIL		9 9	22	. 91	8888	32 23	844	S
	Illinoses t		oevense 5×5	3	9×0	25 25 25 26 26 26	16 X 18 X X	868 888 888	28×10	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	81 > CS
		9 01	ôď		38	3 0	88	55.85 55.85	130	150 170 200	960
	i	DESERBETO &	5		ជន	8,	\$ 58 %	8 25.8	96	2882	. 5

меров I, и із приблизительно соответствуют полю допуска К12, который получается, если высоту шпонки принять н 12, относятся в к двум составным в таблице 2, должен быть изменен на Предельные отклонения развалу устанавлаваются прямым намерени-Соотношения между днаметром вала в сечением шпонки должны строго соблюдаться. угла паза. ем яли нэмеревием размеров $(d-t_1)$ и $(d+t_2)$. Предельные отклонения $(d+t_1)$, но знак предельного отклонения t_1 , данный of 60X0BOPO AMONH HS Глубина шповочного паза втулки и высота заплечика сорртима. Глубана шпоночных пазов не должна измеряться paamepam (d-t₁) N

паза во втулке, и глубиной, равной (включая допуск) видыска на валу может быть заменена шпоночным пазом же ширикы (вылючая допуск), что у шпоночного * По соглашению между заказчиком и изголовителем за номинальный размер. COTA AMONE.

ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К ШПОНКАМ И ЛЫСКАМ (ПАЗАМ), НЕОБХОДИМЫЕ ДЛЯ ПОТРЕБНОСТЕЙ НАРОДНОГО ХОЗЯЙСТВА

 Стандарт не распространяется на соединения, собираемые подгонкой или подбором швонок.

Стандарт не распространяется на соединения, спроектированные до введешия в действие настоящего стандарта.

- Наименьшая фаска s шпонки, указавная в табл. 1, дана для ответственвых соединений.
- 3. Допускается применять шпонки длиной, выходящей за указанные в табл. 1 пределы диапазонов длин. При этом длину свыше 400 мм следует выбирать из ряда Ra20 по ГОСТ 6636.
 - 4. Размер t2 относится к большей глубине цаза.
- Пример условного обозначения шпонки форм А, В в С, b=8 мм, h= =5 мм, l=50 мм;

То же, формы D:

- 6. В ответственных віпоночных соединеннях сопряження дна ваза є боковыми сторонами выполняются по раднусу, величина и предельные отклонения которого указываются на рабочем чертеже.
- 7. На рабочем чертеже должен проставляться один размер для вала t_1 (предпочтительный вариант) или $d-t_1$ и один размер для втулки $d+t_2$.
 - 8. Предельные отклонения угла уклона \pm $\frac{AT10}{2}$ по ГОСТ 8908.
- Предельные отклонения размера длины лыски (паза) вала должны соответствовать полю допуска Н15.
- Контроль размеров шпоночных пазов и их расположения относительно соответствующих дилиндрических поверхностей — ГОСТ 24109 — ГОСТ 24114.
 ГОСТ 24118, ГОСТ 24120 и ГОСТ 24121.

Вместо контроля размеров t_1 и t_2 допускается контролировать размеры $\{d-t_4\}$ и $\{d+t_2\}$, предельные отклонения которых должны соответствовать указанным в табл. 3.

- Теоретическая масса шпонок указана в табл. 4 и 5 приложения 2.
- Зависимость шероховатости поверхности от допусков размеров указана
 табл. 6 приложения 3.
 - Неуказанные отклонения размеров по IT14.

FOCT P 50536-93 C. 7

Таблица 3-

	pr.in	
	Предельные откл	овения размеров
Высота впонка От 5 до 6	d-t ₁	d+t _a
От 5 до 6	_0 _0,1	+0,1 0
Св. 6 до 18	0 -0.2	.+0.2 0

ПРИЛОЖЕНИЕ 2

Справочное

ТЕОРЕТИЧЕСКАЯ МАССА ШПОНОК

ı
ĺ

			F	азмеры	в им.		1 3 0 7	тина и
ь	8	10	12	14	16	18	20	22
h	. 2	6	6	6	7	7	8	9
h_1	8	10.	10	10	11	11	12	14
ı			Теоретич	ская масс	a 1000 mm	юнок форм	ы D, кг	
20	10,01		l				Ī	
22	10,60							
25	11,47	19,00						
28	12,33	20,32						
32	13,46	22,05	28,05					
36	14,57	23,77	30,40	37,60				
40	15,66	25,45	32,42	40,02				
45	17,00	27,52	34,91	42,52	59,34			
50	18,30	29,56	37,34	45,76	63,73	74,80		
56	19,82	31,93	40,20	49,10	67,81	79,34	103,77	
63	21,54	34,64	43,45	52,89	73,04	89,76	111,43	144.99
70	23,20	37,27	46,61	56,58	78,15	91,03	118,94	154.98
80		40,90	50,96	61,65	85,23	98,99	129,40	167.74
90		44,37	55,13	63,90	92,08	106,68	139,54	180,66
100			59,10	71,15	98,65	114,08	149,37	193,23
011			62,88	75,56	104,98	121,20	,158,88	205.46
125			66,33	79,58	114,00	131,36	172,56	223,15
140				91,79	122,46	140,87	185,50	240,06
160					132,86	152,46	209,74	261,41
180					142,25	163,26	216,69	281.37
200						172,58	230,38	299.96
220							242,82	317,16
250								340,37

FOCT P 50536-93 C. 9

Продолжение табл. 4

Размеры в мм

	1 10 2 0 7 11 11 12							
ь	25	28	32	36	40	45	50	
h	9	10	11	12	14	16	18	
h_1	14	16	18	20	22	25	28	
- 1	Tec	ретическа	я масса 10	онолщ 000	с формы Е	, кг		
70	183,77							
80	198,85	261,48						
90	213,53	280,16	374,46					
100	227,82	298,41	397,87	515,91				
110	241,70	316,21	420,78	544,56				
125	261,82	342,09	454,20	586,49	781,96			
140	281.04	366,99	486,49	627.14	836,74	1126,02		
169	305,30	398,64	527,79	679,36	907,58	1220,12	1590,70	
180	327,98	428,53	567,08	723,33	975,90	1311,40	1708,16	
200	349,10	456,66	604,36	777,03	1041,72	1399,86	1822,46	
220	368,65	483,04	639,63	822,47	1105,02	1485,48	1933,61	
250	395,03	497,33	688,76	886,39	1195,26	1608,63	2094,46	
280	417,87	551,62	733,37	915.23	1279,85	1725,41	2248,24	
320		631,27	785,82	1015,77	1383,85	1871,23	2442,29	
360			830,24	1052.85	1477,80	2005,75	2623,78	
400				1129,71	1561,70	2128,96	2792,72	

Таблици 5

\mathbf{P}	部	3	М	e	р:ы.	B	$\mathbf{M}\mathbf{M}$
--------------	---	---	---	---	------	---	------------------------

ь	8	10	12	14	16	18	20	22
λ	5	6	6	6	7	7	8	9
	Te	оретич	еская м	sacca 1	000 шп	онок ф	ормы І	В, иг
20	6,15							
22	6,76							
25	7,65	11,53						
28	8.55	12,88						
32	9,73	14,67	17,60			-		
36	10,90	16,45	19,74	23,03				
40	12,06	18,21	21,85	25,50				
45	13,49	20.40	24,48	28.56	38,29			
50	14,92	22,57	27,08	31,60	42,39	47,69		
56	16,60	25,15	30,17	36,92	47,27	53,17	67,87	
63	18,54	28,12	33,74	39,96	52,90	59,51	76,01	94,49
70	20,44	31,05	37,26	43,47	58,47	65,78	84,07	104,57
80		35,17	42,20	49,24	66.32	74.61	95,46	118,82
90		39,21	47,05	54,90	74,04	83,30	106,68	132,89
100			51,81	60.45	81,64	.91,85	117,75	146,80
410			56.47	65,89	89.11	100.25		
125			63,29	73,84	100,09	112,60	144,73	180,80
140				81,55	110,78	124,63	160,45	200,04
.160					124,60	140,17	180,86	226,58
180					137,91	155,15	200,65	251,80
200						169,56	219,80	276,32
220							238,33	300,15
250								334,61
Для шпонок формы А масса уменьшается на:	0.540	1,013	1,458	1,985	3,025	4,375	5,402	7,352
Для шповок формы С масса уменьшается на;	0,270	0,506	0,729	0,993	1,512	2,188	2,701	3,677

FOCT P 50586-93 C. 11

Продолжение табл. 5

Размеры в мм

ь,	25	28	- 32	36	40	45	50
h	9	10	11	12	14	16	18
1		Teope	етическая	масса 1000) шпонок с	формы В,	кr
70 .	118,83						
80	135,02	168,81					
90	151,01	188,92	238,51				
400	166,81	208,81	263,76	250,10			1
110	182,41	228,48	288,75	355,93			
125	205,45	257,58	325,78	401,82	524,97		
140	228,04	286,18	362,23	447,07	584,67	756.66	
160	257,48	323,55	409,96	506,42	663,17	859,10	1080.16
180	286,13	360,03	456,68	564,63	740,41	960,13	1208,12
200	314,00	395,64	502,40	621,72	816.40	1059,75	1334,50
220	341,08	478,72	547,11	677,67	691,13	1157,95	1459,32
250	380,23	480.81	612,30	759,49	1000,88	1302,61	1643,59
260	417,62	529.28	675,23	838,76	1107,79	1444,09	1824,34
320		590,82	755,61	940,49	1245,95	1627,78	2059,84
360			831,97	1037,71	1379,09	1805,81	2289,06
Для шпо- нок формы А масса умень- шается на:	9,495	13,234	19,014	26,252	37,811	54,691	75,960
Для шпо- вок формы С масса умень- мастся на:	4,745	6,617	9,507	13,126	18,906	27,346	37,980

ЗАВИСИМОСТЬ ПАРАМЕТРОВ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ от допусков размеров

Таблица б

Размеры в им

Допуси размера	R _a , мкм, не более для номинальных размеров						
що квалитетам	до 18	св. 18 до 50	св. 50 до 120	св. 120 до 500			
1179	3,2	3,2	6,3	6,3			
IT10	3,2	6,3	6,3	6,3			
1T11	6,3	6,3	12,5	12,5			
IT12, IT13	12.5	12,5	25	25			
IT14, IT15	12,5	25	50	50			

Примечання:

1. Параметры шероховатости поверхностей с неуказавными предельными

отклонениями — $R_e 20$ мкм. 2. Параметр шероховатости дна швоночного паза рекомендуется принимать равным $R_e 6.3$ мкм.

информационные данные

1. РАЗРАБОТАН И ВНЕСЕН Техническим комитетом по стан-

дартизации ТК 258 «Зубчатые передачи и конструктивные элементы деталей машин»

РАЗРАБОТЧИКИ:

- В. И. Гольдфарб, докт. техн. наук, Н. М. Шоломов, канд. техн. наук, Э. В. Бабенкова, канд. техн. наук
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 25.03.93 № 91

Настоящий стандарт разработан методом прямого применения международного стандарта ИСО 2492—74 «Шпонки клиновые низкие с головкой и без головки и шпоночные пазы» с дополнительными требованиями, отражающими потребности народного хозяйства

- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, из который дана ссылка	Номер пункта, придожения
FOCT 6636-69 FOCT 8908-81	Приложение 1
FOCT 24068—80	2
FOCT 24109-80 FOCT 24110-80 FOCT 24111-80 FOCT 24112-80 FOCT 24113-80 FOCT 24114-80 FOCT 24118-80 FOCT 24120-80 FOCT 24121-80	Приложение 1

Редактор А. Л. Владимиров Техинческий редактор В. Н. Прусакова Корректор М. С. Кабашова

Сдане в набор 12.64.83. Подп. в неч. 88.95.93. Усл. печ. н. 1,8 Усл. кр. очч. 1,8. Уч.-кэд. н. 8.72. Тир. 1395. С 248

Ордена «Знак Почета» Издательство стандартов, 107076, Москва, Колодезный вер., 14 Тип. «Московский печативи». Москва, Лилии мер., 6. Зак. \$41

