

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МЕТОДЫ ПЕРЕСЧЕТА МАССЫ ГИГРОСКОПИЧЕСКИХ МАТЕРИАЛОВ И ПРОДУКТОВ ПРИ ОТКЛОНЕНИИ ИХ ВЛАЖНОСТИ ОТ НОРМИРОВАННОЙ

FOCT 4680-49

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ Москва

МЕТОДЫ ПЕРЕСЧЕТА МАССЫ ГИГРОСКОПИЧЕСКИХ МАТЕРИАЛОВ И ПРОДУКТОВ ПРИ ОТКЛОНЕНИИ ИХ ВЛАЖНОСТИ ОТ НОРМИРОВАННОЙ

ГОСТ 4680-49

Утвержден Всесоюзным комитетом стандартов 31 января 1949 г.

1. Настоящий стандарт распространяется на методы пересчета массы хранящихся и сдаваемых партий гигроскопических материалов и продуктов (порошкообразных, кусковых, волокинстых, мазеобразных, листовых, брусковых), имеющих влажность выше или ниже нормированной государственными стандартами, ведомственными техническими условиями или другой технической документацией, и применяется для взаимных расчетов по этим материалам и продуктам между поставщиком и потребителем, а также для учета изменений массы за период хранения.

Примечания:

В тех случаях, когда установленные в технической документации предельные нормы влажности являются браковочными, пересчет массы сверх. этих нормі.

не производится и партия материала приемке не подлежит.

Правила отбора образцов, методы лабораторного анализа и правила распространения результатов анализа на всю испытуемую массу устанавливаются в стандартах, ведомственных технических условиях или другой технической документации на каждый вид материала и продукта.

В зависимости от установленной в технической документации показателей нормированной влажности (абсолютной или от-

носительной) применяются:

- а) метод пересчета массы материалов и продуктов при отнесении нормированной влажности в процентах к абсолютно сухой их массе (абсолютная влажность);
- б) метод пересчета массы материалов и продуктов при отнесении нормированной влажности в процентах к массе влажных материалов и продуктов (относительная влажность).
- 3. В тех случаях, когда нормированная влажность отнесена к абсолютно сухой массе материала, пересчет фактической массы материала в партии на массу материала с нормированной влажностью (m_n) должен производиться по следующей формуле:

Изданне официальное

Перепечатка воспрещена

Переиздание. Июнь 1987 г.

© Издательство стандартов, 1988

$$m_s = m_{\Phi} \frac{100 + W_s}{100 + W_{\Phi}} \text{ Kr},$$
 (1)

где m_{ϕ} — фактическая масса нетто материалов, кг;

 $W_{\rm N}$ — нормированная влажность (установленная к абсолютно сухой массе), %;

W_Ф — фактическая влажность, %.

Пример 1. Марка хлопка-волокна первого сорта весит 15500 кг. Фактическая влажность волокна по лабораторному анализу составляет 7,5%. Норма влажности хлопка-волокиа для данного района согласно ГОСТ 3279-76 составляет 8%.

$$m_{\rm H} = \frac{15500 \cdot (100 + 8)}{100 + 7.5} = 15572 \text{ Kg}.$$

Пример 2. Марка хлонка-волокиа первого сорта весит 15500 кг. Фактическая влажность волокна по дабораторному анализу составляет 10%. Норма влажности хлопка-волокна для данного района согласно ГОСТ 3279-76 составляет 8%.

$$m_n = \frac{15500 \cdot (100 + 8)}{100 + 10} = 15218 \text{ K}\text{C}.$$

 В тех случаях, когда нормированная влажность отнесена к массе влажного материала, пересчет фактической массы материала в партии на массу материала с нормированной влажностью $(m_{\rm H},)$ должен производиться по следующей формуле:

$$m_{\rm B_1} = m_{\Phi_1 \overline{00 - W_{\rm B_1}}}^{100 - W_{\Phi_1}} Kr.$$
 (2)

где m_{Φ_1} — фактическая масса нетто материала, кг; $W_{\rm H_1}$ — нормированная влажность (установленная к массе влажного материала), %;

 W_{Φ_1} — фактическая влажность, %. Пример 1. Партия льняной тресты весит 630 кг. Фактическая влажность тресты, установленная лабораторным анализом, составляет 18%. Норма влажности в тресте согласно ГОСТ 2975—73 установлена 16%.

$$m_{\text{R}_1} = \frac{630 \cdot (100 - 18)}{100 - 16} = 615 \text{ kg}.$$

Пример 2. Партия льняной тресты весит 630 кг. Фактическая влажность тресты, установленная лабораторным анализом, составляет 14%. Норма влажности в тресте согласно 2975—73 установлена 16%.

$$m_{\mu_0} = \frac{-630 \cdot (100 - 14)}{100 - 16} = 645 \text{ Kg}.$$

5. Для упрощения вычислений по пересчету фактической массы партии на массу с нормированной влажностью к стандарту прилагается справочная таблица коэффициентов (табл. 1), позволяющая определить массу партии, фактическая влажность которой выше или ниже нормированной в технической документации. Таблица состоит из ряда чисел, которые являются коэффициентами, позволяющими вносить необходимую поправку для определения массы сдаваемой или принимаемой партии. Порядок пользования таблицей указан в приложении (см. пояснения в приложении).

Для определения массы партии, когда фактическая влажность материала и продукта характеризуется дробными числами процента, могут быть составлены таблицы коэффициентов по аналогии с табл. 2, вычисленной по формуле 2 для нормированной влаж-

ности, равной 15% (см. табл. 2).

Примечание. Таблицы 1 и 2 распространяются на метод пересчета массы материалов и продуктов при отнесении нормированной влажности в процентах к массе влажных материалов и продуктов (формула 2). Для пересчета массы материалов и продуктов при отнесении нормированной влажности в процентах к абсолютно сухой массе материалов и продуктов следует руководствоваться формулой 1, приведенной в п. 3 настоящего стандарта, или таблицей, составляемой министерствами по аналогии с табл. 1.

пояснения

к пользованию справочной таблицей коэффициентов для пересчета массы материалов и продуктов при отклонении их влажности от нормированной

 Справочная таблица коэффициентов для пересчета массы материалов и продуктов при отклонении их влажности от нормированной поэволяет упрощенно определять массу партин материалов и продуктов в тех случаях, когда процент фактической влажности их выше или ниже процента нормированной влажности (отнесенной к массе влажных материалов); установленной государственными стандартами (ГОСТами и ОСТами) или ведомственными техническими условиями.

 В первой графе табл. І вертикально расположены числа от І до 20. Эти числа обозначают проценты нормированной влажности, предусмотренные соответствующими государственными стандартами (ГОСТами и ОСТами), ведомственными техническими условиями или соответствующими договорами заинтере-

сованных организаций.

3. В вервой строке в горизонтальном направлении расположены числа от 1 до 30. Этими числами обозначается фактическая влажность материалов в продуктов в процентах, которая определяется соответствующими лабораторными анализами, установленными в технической документации на материалы и продукты.

- 4. Числа, расположенные в двадцати горизонтальных строках внутри таблицы, являются поправочными коэффициентами, на которые следует умножить фактический вес предъявленной к сдаче партии, чтобы получить вес партии, приведенный и нормированной влажности. Коэффициенты вычислены до четвертого десятичного знака. В тех случаях, если пятый знак равен или больше 5, то увеличен в коэффициенте четвертый десятичный знак на единицу, а пятый знак отброшен. Если пятый знак равен 4 или меньше, то он отброшен без увеличения четвертого знака. Таблица должна применяться в тех случаях, ногда могут быть допущены округления результатов, так как применение коэффициентов дает незначительные отклонения, выражающиеся в тысячных долях процента. В остальных случаях вычисление должно производиться по формуле.
- Порядок пользования таблицей следующий; для того чтобы определить. за сколько килограмм или тони следует принимать предъявленную к приему партию материала и продукта, если процент фактической влажности их выше процента нормированной влажности, по справочной таблице находят поправочный коэффициент. Для этого в первой вертикальной графе надо отыскать процент нормированной влажности и от этого числа следует идти вправо до пересечения с вертикальной строкой, вверху которой находится число, соответствующее фактической влажности. На пересечении находят необходимый коэффициент для пересчета. Так, например, партия льняной тресты весит 630 кг. фактическая влажность тресты, установленная дабораторным анализом, составляет 18%. Нормальное содержание влаги в тресте согласно ГОСТ 2975-73 установлено 16%. Для выявления коэффициента, необходимого для пересчета массы партии, находят в первой графе таблицы число 16 (это число соответствует нормированной для данного материала влажности в процентах). От этого числа по шестнадцатой строке вправо идут до пересечения с вертикальным столоцом, находящимся под числом 18 (это число соответствует фактической влажности материала в процентах). На пересечении граф находят число 0,9762. Это число показывает, что массу сдаваемой партии необходимо умножить на этот поправочный коэффициент и тогда получится ответ, за какую массу следует принимать предъявленную к

присму партию, т. с. $630 \times 0.9762 = 615,006$ кг, или за округлением 615 кг (пок

применении формулы получаем ответ 615 кг).

6. В тех случаях, когда процент фактической влажности ниже процента нормированной влажности, нахождение поправочного коэффициента следует производить тем же порядком, как и в предыдущем случае.

Так, например, партия льняной тресты весит 630 кг. Фактическая влажность тресты, установленияя лабораторным анализом, составляет 14%. Нормальное со-

держание влаги в тресте согласно ГОСТ 2975-73 установлено 16%.

Для нахождения коэффициента для пересчета массы партии находят в первой графе таблицы число 16. От этого числа по строке вправо как и в предыдущем случае, илут до пересечения с вертикальным столбцом, находящимся под числом 14. На пересечении граф находят число 1,0238, на которое умножают фактическую массу партии, т. е. 630×1,0238—644,994, или за округлением 645 кг

(по формуле получаем ответ 645 кг).

7. Применим таблицу коэффициентов для определения массы нартий, когда фактическая влажность материала и продукта характеризуется дробными числами процента. Например, вередвется партия зерна в количестве 10 000 m с фактической влажностью в размере 16,4%, при нормированной влажности 14%. Сначала найдем поправочный коэффициент для целого числа 16. По четыриадцатой горизонтальной строке, соответствующей числу вормированной влажности 14%, идем вправо до столбца, находящегося под числом 16 (фактическая влажность 16%). Здесь ваходим число 0,9767. По той же четыриадцатой строке находим поправочный коэффициент для 17% фактической влажности. Он равен 0,9651. Следовательно, для одного процента (17—16) поправочный коэффициент будет равен 0,9767—0,9651 —0,0116.

Для одной десятой процента этот поправочный коэффициент будет в десять

раз меньше, а для четырех десятых — в четыре раза больше.

0,0116:10 и умножить на 4. Ответ 0,00464.

Эту поправку следует отнять от 0,9767. Ответ 0,9721.

Окончательный ответ: 10 000×0,9721 равен 9721 m. Таким же образом расчет производится и для сотых долей процента.

При применении формулы ответ получаем также 9721 т.

Таблица 1

ТАБЛИЦА КОЭФФИЦИЕНТОВ

для пересчета массы материалов и продуктов при отклонении их влажности от нормированной (формула 2)

	Фактическая влажность в процентах							
Норинрованиая вляжность в %	1	2	3	4	5 -	6		
1	1,0000	0,9899	0,9798	0,9697	0,9596	0,9495		
2	1,0102	1,0000	0,9898	0,9796	0,9694	0,9592		
3	1,0206	1,0103	1,0000	0,9897	0.9799	0,9691		
4	1,0312	1,0208	1,0104	1,0000	0,9896	0,9792		
5	1,0421	1,0316	1,0210	1,0105	1,0000	0,9895		
6	1,0532	1,0425	1,0319	1,0213	1,0106	1,0000		
7	1,0645	1,0538	1,0430	1,0322	1,0215	1,0107		
8	1,0761	1,0652	1,0543	1,0435	1,0326	1,0217		
9	1,0879	1,0769	1,0659	1,0549	1,0439	1,0330		
10	1,1000	1,0889	1,0778	1,0667	1,0555	1,0444		
11	1,1121	1,1011	1,0899	1,0786	1,0674	1,0562		
12	1.1250	1,1136	1.1023 ~	1,0909	1,0795	1,0682		
13	1,1379	1,1264	1,1149	1,1034	1,0919	1,0804		
14	1,1512	1,1395	1,1279	1,1163	1,1046	1,0930		
15	1,1641	1,1529	1,1412	1,1294	1,1175	1,1059		
16	1,1786	1,1667	1,1548	1,1428	1,1309	1,1190		
17	1,1928	1,1807	1,1687	1,1566	1,1446	1,1325		
18	1,2073	1,1951	1,1829	1,1707	.1,1585	1,1463		
19	1,2222	1,2099	1,1975	1,1852	1,1728	1,1605		
20	1,2375	1,2250	1,2125	1,2000	1,1875	1,1750		

FOCT 4680-49 C. 7

Продолжение

	Фактическая влажность в процентах							
Нормированная влажность в %	7	8	à	10	11	tā		
1	0,9394	0,9293	0.9192	0,9091	0,8990	0,8889		
2	0,9490	0,9398	0,9286	0,9184	0,9082	0,8979		
3	0,9588	0,9484	0,9381	0.9278	0,9175	0,9072		
4	0,9687	0,9583	0,9479	0,9375	0,9271	0,9167		
5	0,9789	0,9684	0,9579	0,9474	0,9368	0,9263		
6	0,9894	0,9787	0,9681	0,9574	0,9468	,0,9362		
7	1,0000	0,9892	0,9785	0,9677	0,9570	0,9462		
8	1,0109	1,0000	0,9891	0,9783	0,9674	0.9565		
9	1,0220	1,0110	1,0000	0,9890	0,9780	0,9670		
10	1,0333	1,0222	1,0111	1,0000	0,9889	0,9778		
11	1,0449	1,0337	1,0225	1,0112	0000,1	0,9888		
12	1,0568	1,0454	1,0341	1,0227	1,0114	1,0000		
13	1,0690	1,0575	1,0460	1,0345	1,0230	1,0115		
14	1,0814	1,0698	1,0581	1,0465	1,0349	1,0232		
15	1,0941	1,0823	1,0706	1,0588	1,0470	1,0353		
16	1,1071	1,0952	1,0833	1,0714	1,0595	1,0476		
17	1,1205	1,1084	1,0964	1,0843	1,0723	.1,0602		
18	1,1341	1,1219	1,1098	1,0976	1,0854	1,0732		
19	1,1481	1,1358	1,1234	1,1111	1,0988	1,0864		
20	1,1625	1,1500	1,1375	1,1250	1,1125	1,1000		

	Фантическая влажность в процентах							
Нормированная влажность в %	13	14	15	16	17	18		
1	0,8788	0.8687	0,8586	0,8485	0,8384	0,8283		
2	0,8877	0,8775	0,8673	0,8571	0,8469	0,836		
3	0,8969	0,8866	0,8763	0,8660	0,8557	0,845		
4	0,9062	0,8958	0,8854	0,8750	0,8646	0,854		
5	0,9158	0,9053	0,8947	0,8842	0,8737	0,863		
6	0,9255	0,9149	0,9042	0,8936	0.8830	0,872		
. 7	0,9355	0,9247	0,9140	0,9032	0,8925-	0,881		
8	0,9456	0,9348	0,9239	0,9130	0,9022	0,891		
9	0.9560	0,9450	0,9341	0,9231	0,9121	0,901		
10	0,9667	0,9555	0,9444	0.9333	0,9222	0,911		
11	0,9775	0,9663	0,9552	0,9438	0,9326	0,921		
12	0,9886	0,9773	0,9659	0,9545	0,9432	0,931		
13	1,0000	0,9885	0,9770	0,9655	0,9540	0,94		
14	1,0116	1,0000	0,9884	0,9767	0,9651	0,95		
15	1,0235	1,0118	1,0000	0,9882	0,9765	0,96		
16	1,0357	1,0238	1,0119	1,0000	1889,0	0,97		
17	1,0482	1,0361	1,0241	1,0120	1,0000	0,98		
18	1,0610	1,0488	1,0366	1,0244	1,0122	1,00		
19	1,0741	1,0617	1,0494	1,0370	1,0247	1,01		
20	1,0875	1,0750	1,0625	1,0500	1,0375	1,02		

FOCT 4680-49 C, 9

Продолжение

	Фактическая влажность в процентах							
Нормированиям влажность в %	19	20	21	22	23	24		
I	0,8182	0,8081	0,7980	0,7879	0,7778	0,767		
2	0,8265	0,8163	0,8061	0,7959	0,7857	0,775		
3	0,8350	0,8247	0,8144	0,8041	0,7938	0,783		
4	0,8437	0,8333	0,8229	0,8125	0,8021	0,791		
5	0,8526	0,8421	0,8316	0,8210	0,8105	0,800		
6	0,8617	0,8511	0,8404	0,8298	0,8191	0,808		
7	0,8710	0,8602	0,8495	0,8387	0,8279	0,817		
8	0,8804	0,8696	0,8587	0,8478	0,8369	0,826		
9	0,8901	0,8791	0,8681	0,8571	0,8461	0,835		
10	0.9000	0,8889	0,8778	0,8667	0,8555	0,844		
11	1019,0	0,8988	0,8876	0,8764	0,8652	0,853		
12	0,9204	1606.0	0,8977	0,8864	0,8750	0,863		
13	0,9310	7616,0	0,9080	0,8965	0,8850	0,873		
14	0,9419	0,9302	0,9186	0,9070	0,8953	0,883		
15	0,9529	0,9412	0,9294	0,9176	0,9059	0,894		
16	0,9643	0,9524	0,9405	0,9286	0,9167	0,904		
17	0,9759	0,9638	0,9518	0,9397	0,9277	0,915		
18	0,9878	0,9756	0,9634	0,9512	0,9390	0,926		
19	1,0000	0,9876	0,9753	0,9630	0,9506	0,938		
20	1,0125	1,0000	0.9875	0,9750	0,9625	0,950		

Продолжение

Нормированияя	Фактическая влажность в процентах							
влажность в %	25	26	27	28	29	30		
1	0,7576	0,7475	0,7374	0,7273	0,7172	0.7071		
2	0,7653	0,7551	0,7449	0,7347	0.7245	0,7143		
3	0,7732	0,7629	0,7526	0,7423	0,7319	0,7216		
4	0,7812	0,7708	0,7604	0,7500	0,7396	0,7292		
5	0,7895	0,7789	0,7684	0,7579	0,7474	0,7368		
6	0,7978	0,7872	0,7766	0,7660	0,7653	0,7447		
7	0,8064	0,7957	0,7849	0,7742	0,7634	0,7527		
8	0,8152	0,8043	0,7935	0,7826	0.7717	0,7609		
9	0,8242	0,8132	0,8022	0,7912	0,7802	0.7692		
10	0,8332	0,8222	0,8111	0,8000	0,7889	0,7778		
11	0.8427	0,8311	0,8202	0,8090	0,7977	0,7865		
12	0,8523	0,8409	0,8295	0,8182	0,8068	0,7954		
13	0,8621	0,8506	0,8391	0,8276	0,8161	0,8046		
14	0,8721	0,8605	0,8488	0,8372	0,8256	0,8139		
15	0,8823	0,8706	0,8588	0,8470	0,8353	0.8235		
16	0,8928	0,8809	0,8690	0,8571	0,8452	0,8333		
17	0,9036	0,8916	0,8795	0,8675	0,8554	0,8434		
18	0,9146	0,9024	0,8902	0,8780	0,8658	0,8536		
19	0,9259	0,9136	0,9012	0,8889	0,8765	0,8642		
20	0,9375	0,9250	0,9125	0,9000	0,8875	0,8750		

Табляцу составили:

Зав. кафедрой технологии с.-х. продуктов Тимирязевской сельскохозяйственной академии — проф. В. В. Тугаринов.

Ассистент кафедры почвоведения и общей химии Московского гидромелноративного института им. В. Р. Вильямса — З. А. Кручинина.

Таблица 2

ТАБЛИЦА КОЭФФИЦИЕНТОВ

для пересчета массы материалов и продуктов, фактическая влажность которых характеризуется дробными числами процента при нормированной влажности, равной 15% (формула 2)

		Десятые доли	процента факти	ческой влажног	TH
Фантическая варжность в %	0	0,1	0,2	0,3	0,4
10	1,0588	1,0576	1,0564	1,0552	1,0540
11	1,0470	1,0458	1,0447	1,0435	1,0423
12	1,0353	1,0341	1,0329	1,0317	1,0305
13	1,0235	1,0223	1,0212	1,0200	1,0187
14	1,0118	1,0106	1,0094	1,0082	1,0070
15	1,0000	0,9988	0,9977	0,9965	0,9953
16	0,9882	0,9870	0,9860	0,9848	0,9836
17	0,9765	0,9753	0,9742	0,9730	0,9718.
18	0,9647	0,9635	0,9625	0,9613	0,9601
19	0,9529	0,9517	0,9506	0,9494	0,9483
20	0,9412	0,9400	0,9388	0,9377	0,9366
21	0,9294	0,9282	0,9270	0,9259	0,9247
22	0,9176	0,9164	0,9153	0,9141	0,9130
23	0,9059	0,9047	0,9036	0,9024	0,9012
.24	0,8941	0,8929	0,8918	0,8907	0,8895
25	0,8823	0,8812	0,8800	0,8788	0,8776

C. 12 FOCT 4680-49

Продолжение

		Десятые доли в	роцента фактя	ческой влажнос	TH
Фактическая влажиюеть в %	0,5	0.6	0.7	0,8	0,9
10	1,0529	1,0517	1,0506	1,0494	1,0482
11	1,0411	1,0400	1,0388	1,0376	1,0365
12	1,0294	1,0282	1,0270	1,0258	1,0247
13	1,0176	1,0164	1,0152	1,0141	1,0129
14	1,0059	1,0047	1,0035	1,0024	1,0012
15	0,9941	1,9930	0,9918	0,9906	0,9894
16	0,9824	0,9812	0,9800	0,9788	0,9776
17	0,9706	0,9694	0,9682	0,9670	0,9658
18	0,9589	0,9577	0,9565	0,9552	0,9540
19	0,9471	0,9459	0,9447	0,9435	0,9423
20	0,9353	0,9341	0,9329	0,9318	0,9306
21	0,9235	0,9223	0,9212	0,9200	0,9188
22	0,9118	0,9106.	0,9095	0,9083	0,9071
23	0,9000	0,8988	0,8977	0,8965	0,8953
24	0,8883	0,8870	0,8859	0,8848	0,8836
25	0,8765	0,8753	0,8741	0,8730	0,8718
				l .	

Редактор В. С. Бабкина Технический редактор М. М. Герасименко Корректор С. И. Ковалева

Сдано в наб. 10.09.87 Подп. в печ. 22.03.88 1.0 усл. в. л. 1.0 усл. кр.-отт. 0.63 уч.-язд. л. Тираж 3000 Цена 3 коп.

Орденя «Знак Почета» Издательство стандартов, 123840, Москва, ГСД, Новопресненский пер., д. 3. Вильнюсская типография Издательства стандартов, ул. Дариус и Гирено, 39. Зак. 4032.

		Единица			
Benvana	Hausenniantes	Обозначения			
4	Наменоволии	мендунеродное	русское		
основны	Е ЕДИНИ	тя си			
Длина	метр	m	M		
Macca	килограмм	kg	KF		
Время	секунда	s	c.		
Сила электрического тока	ампер	Á	A		
Термодинамическая температура	кольвин	K	K		
Количество вещества	моль	mol	моль		
Сила света	кандела	_ ed	кд		
дополните	Льные еј	иницы сы	ı		
Плоский угол	радиан	rad	род		
Телесный угол	стераднан	sr	cp		

ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, ИМЕЮЩИЕ СПЕЦИАЛЬНЫЕ НАИМЕНОВАНИЯ

		диница		Быржиение через	
Regionsult	Наименова-	Обозн	a we some	основные и до-	
Market Tribe	MAD.	жеждуна- роджав	руссия	полинтельные единицы СИ	
Частота	герц	Hz	Гц	c-1	
Сила	ньютон	N	Н	W-KL-C-3	
Давление	поскаль	Pa	Па	W-1 - KL-C-3	
Энергия	джоуль	J.	Дж	M2 - KF - C-2	
Мощность	BOTT	W	81	M2 · KF · C-3	
Количество электричество	кулон	C	Кл	c·A	
Электрическое напряжение	вольт	V	В	M3-Kr-c-3-A-	
Эпектрическая емкость	фарад	F	Φ	w-ikt-r-c+-A	
Электрическое сопротивление	ОМ	₽	O _M	M2-K1-C-3-A-₹	
Эпектрическая проводимость	сименс	S	C _M	M-4Kr=1.c3.A2	
Поток магнитной индукции	вебер	Wb	86	M2 KL C-5 4-1	
Могнитноя индукция	тесла	T	To	кг ⋅ с −2 ⋅ А −1	
Индуктивность	генри	Н	Гн	M2 · KT: C-2 · A-4	
Световой поток	люмен	lm	лм	кд-ср	
Освещенность	люкс	1x	лк	м~2 ⋅ нд ⋅ ср	
Активность радионуклида	беккерель	Bq	Б×	e=1	
Поглощенноя доза нонизирую-	Regs	Gv	Гр	M2 · €-2	
шего излучения					
Эквивалентная доза излучения	зиверт	Sv	3.	M2 · C-3	

