СЕРА ТЕХНИЧЕСКАЯ

Определение содержания мышьяка. Фотометрический метод с применением диэтилдитиокарбамата серебра

Издание официальное

E3 4—99

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ М н е к

Предисловие

 РАЗРАБОТАН Открытым акционерным обществом «Институт горно-химической промышленности» (ОАО «Горхимпром» — Украина)

ВНЕСЕН Государственным комитетом Украины по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 9 от 12 апреля 1996 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика Республика Армения Республика Беларусь Грузия Республика Казахстан Киргизская Республика Республика Молдова Российская Федерация Республика Таджикистан Туркменистан Республика Узбекистан Украина	Азгосстандарт Армгосстандарт Госстандарт Госстандарт Беларуси Грузстандарт Госстандарт Республики Казахстан Киргизстандарт Молдовастандарт Госстандарт России Таджикгосстандарт Главная государственная инспекция Туркменистана Узгосстандарт Госстандарт

- 3 Настоящий стандарт соответствует международным стандартам ИСО 3705—76«Сера техническая. Определение содержания мышьяка. Фотометрический метод с применением диэтилдитио-карбамата серебра» и ИСО 2590—73 «Общие методы определения мышьяка. Фотометрический метод с применением диэтилдитиокарбамата серебра» в части разделов 3—5, 6.2 6.4 и приложения А
- 4 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 25 февраля 1999 г. № 50 межгосударственный стандарт ГОСТ 30355.5—96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2000 г.

5 ВВЕДЕН ВПЕРВЫЕ

© ИПК Издательство стандартов, 1999

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

Н

Содержание

ŀ	Назначение и область применения
	Нормативные ссылки
3	Сущность метода
4	Реактивы
	Аппаратура
	Отбор и подготовка проб
7	Методика определения
	7.1 Приготовление анализируемого раствора
	7.2 Контрольный опыт
	7.3 Построение калибровочного графика
	7.4 Определение
8	Обработка результатов определения
)	Протокол определения
П	риложение А Применение шинка в форме проволоки

Ввеление

Настоящий стандарт разработан методом прямого применения международного стандарта ИСО 3705—76 (первое издание) «Сера техническая. Определение содержания мышьяка. Фотометрический метод с применением диэтилдитиокарбамата серебра», а также разделов 3—5, 6.2—6.4 и приложения А ИСО 2590—73 (первое издание) «Общие методы определения мышьяка. Фотометрический метод с применением диэтилдитиокарбамата серебра» с дополнительными требованиями и изменениями, отражающими потребности экономики страны, а именно:

- предусмотрено применение стандарта для сертификации технической серы;
- наименования единиц физических величин приведены в соответствие с требованиями
 ГОСТ 8.417;
- указаны конкретные наименования, типы и марки аппаратуры и реактивов (вместо приведенной допускается использовать другую аппаратуру, показатели качества которой соответствуют требованиям внедряемого стандарта);
- расширены требования и приведены пояснения для облегчения вычисления результатов определения;
 - приведена формула для определения массовой доли мышьяка в технической сере.

Настоящий стандарт действует наравне с ГОСТ 127.2 и используется по согласованию между изготовителем и потребителем технической серы. Результаты анализов, полученные в соответствии с этими стандартами, сопоставимы в пределах погрешностей определений.

Технические отклонения набраны вразрядку, а дополнительные требования и изменения полужирным курсивом.

СЕРА ТЕХНИЧЕСКАЯ

Определение содержания мышьяка. Фотометрический метод с применением диэтилдитиокарбамата серебра

Sulphur for industrial use.

Determination of arsenic content.

Silver diethyldithiocarbamate photometric method

Дата введения 2000-01-01

Назначение и область применения

Настоящий стандарт устанавливает фотометрический метод определения содержания (массовой доли) мышьяка с применением диэтилдитиокарбамата серебра в технической сере.

Метод применим к технической сере, содержание (массовая доля) мышьяка в которой не менее 0.5 мг/кг (0,0005 %).

Стандарт пригоден для целей сертификации.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.417—81 Государственная система обеспечения единства измерений. Единицы физических величин

ГОСТ 127.2—93 Сера техническая. Методы испытаний

ГОСТ 127.3—93 Сера техническая. Отбор и подготовка проб

ГОСТ 1770—74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Технические условия

ГОСТ 3118-77 Реактивы. Кислота соляная. Технические условия

ГОСТ 4109-79 Реактивы. Бром. Технические условия

ГОСТ 4204-77 Реактивы. Кислота серная. Технические условия

ГОСТ 4232-74 Реактивы. Калий йодистый. Технические условия

ГОСТ 4328—77 Реактивы, Натрия гидроокись. Технические условия

ГОСТ 4461-77 Реактивы. Кислота азотная. Технические условия

ГОСТ 4517—87 Реактивы. Методы приготовления вспомогательных реактивов и растворов, применяемых при анализе.

ГОСТ 6613—86 Сетки проволочные тканые с квадратными ячейками. Технические условия

ГОСТ 6709—72 Вода дистиллированная. Технические условия

ГОСТ 7328-82 Меры массы общего назначения и образцовые. Технические условия

ГОСТ 9737—93 (ИСО 641—75) Посуда лабораторная стеклянная. Шлифы сферические взаимозаменяемые.

ГОСТ 13647-78 Реактивы. Пиридин. Технические условия

ГОСТ 20288—74 Реактивы. Углерод четыреххлористый, Технические условия

ГОСТ 24104-88 Весы лабораторные общего назначения и образцовые. Общие технические условия

Издание официальное

1

ГОСТ 25336—82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 29228—91 (ИСО 835-2—81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 2. Пипетки градуированные без установленного времени ожидания

3 Сущность метода

Растворение анализируемой пробы в четыреххлористом углероде. Окисление бромом и азотной кислотой.

Восстановление мышьяка цинком в среде серной кислоты с образованием арсина.

Взаимодействие арсина с раствором диэтилдитиокарбамата серебра в пиридине.

Фотометрическое измерение интенсивности фиолетово-красной окраски коллоидного раствора диспергированного серебра в максимуме кривой поглощения (при длине волны 540 нм).

Примечание — Реакция образования коллоидного серебра:

 $AsH_3 + 6Ag(DDTC) = 6Ag + 3H(DDTC) + As(DDTC)_h$

4 Реактивы

Все реактивы (в особенности цинк) должны быть свободны от мышьяка или содержать его в очень малом количестве.

При определении следует использовать дистиллированную воду **по ГОСТ 6709** или воду эквивалентной степени чистоты.

- 4.1 Кислота серная по ГОСТ 4204, 15 н. раствор (концентрации с (1/2 H_2SO_4) = 15 моль/дм³).
- 4.2 Диэтилдитиокарбамат серебра (Ag(DDTC)), раствор в пиридине концентрации 5 г/дм².
- 1 г диэтилдитиокарбамата серебра растворяют в небольшом количестве пиридина плотиюстью ρ~0,980 г/см² по ГОСТ 13647 и доводят объем пиридином до 200 см³. Раствор хранят в герметически закрытой бутыли из темного стекла в защищенном от света месте.

Раствор устойчив в течение двух недель.

- Мышьяк, стандартный раствор концентрации 0,100 г/дм³.
- 0,1320 г оксида мышьяка (III) (Аs₂O₃) взвещивают с точностью до 0,0001 г и переносят в химический стакан вместимостью, например, 100 см³. Доливают ~ 2 см³ раствора гидроксида натрия концентрации 50 г/дм³ по ГОСТ 4328 и растворяют оксид мышьяка (III). Раствор количественно переносят в мерную колбу вместимостью 1000 см³ с одной меткой. Химический стакан несколько раз промывают водой, собирая промывные воды в ту же мерную колбу, доливают водой до метки и перемещивают.
 - 1 см⁷ полученного основного раствора содержит 100 мкг мышьяка (As),
 - 4.4 Мышьяк, стандартный раствор концентрации 2,5 мг/дм³.
- 25 см³ стандартного раствора мышьяка (4.3) переносят в мерную колбу с одной меткой вместимостью 1000 см³, доливают водой до метки и перемешивают.

Раствор готовят непосредственно перед применением.

- 1 см³ полученного раствора содержит 2,5 мкг мышьяка (As).
- Поглощающая вата, пропитанная раствором ацетата свинца.
- 50 г тригидрата ацетата свинца (Pb(CH₃COO)₂ · 3H₂O) растворяют в 250 см³ воды. Пропитывают поглощающую вату полученным раствором, удаляют избыток раствора, дав ему стечь, и сущат вату в вакууме при комнатной температуре. Хранят вату в герметически закрытом сосуде.

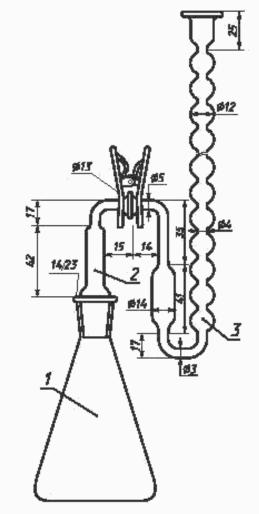
Примечание — Пропитанную раствором ацетата свинца поглощающую вату допускается гот овить по ГОСТ 4517.

- Калия йодид, раствор концентрации 150 г/дм³.
- 15 г йодида калия по ГОСТ 4232 растворяют в воде, доливают водой до 100 см³ и перемешивают.
- 4.7 Олова хлорид (П), раствор в соляной кислоте.
- 40 г дигидрата хлорида олова (II) (SnCl₂ · 2H₂O) растворяют в смеси, состоящей из 25 см³ воды и 75 см³ раствора соляной кислоты по ГОСТ 3118.

Примечание — Допускается раствор хлорида олова (II) готовить по ГОСТ 4517.

- 4.8 Цинк в форме дробинок диаметром от 0,5 до 1 мм или в какой-либо другой форме, которая, исходя из условий анализа, дает эквивалентные результаты в заданных условиях определения (приложение А).
- 4.9. Бром, раствор, содержащий три объема четыреххлористого углерода по ГОСТ 20288 и два объема брома по ГОСТ 4109 (раствор с объемной долей брома 40 %).
 - 4.10 Кислота азотная плотностью р ~ 1,4 г/см³ по ГОСТ 4461, раствор с массовой долей 68 %.

5 Аппаратура


Вся стеклянная посуда, применяемая при определении содержания (массовой доли) мышьяка, должна быть промыта горячей концентрированной серной кислотой по ГОСТ 4204 при соблюдении требуемых мер предосторожности, затем тщательно промыта водой и хорошо высушена.

При определении используется лабораторная аппаратура:

- пипетки 1-1-1-1, 1-1-1-2, 1-1-1-10 по ГОСТ 29228;
- цилиндр 1-100 по ГОСТ 1770;
- колбы мерные 2-100-2, 2-250-2, 2-500-2, 2-1000-2 по ГОСТ 1770;
- колба коническая со шлифом Кн-1-500-29/32 ТХС по ГОСТ 25336;
- воронка ВП ХС по ГОСТ 25336;
- стаканы B-1-100 TC, B-1-400 TC по ГОСТ 25336;
 - эксикатор по ГОСТ 25336;
 - сито с сеткой 063Н по ГОСТ 6613;
- весы лабораторные общего назначения 2-го класса точности по ГОСТ 24104;
- набор гирь общего назначения 2-го класса точности по ГОСТ 7328 массой 210 г;
- икаф сушильный типа СНОЛ, обеспечивающий устойчивую температуру нагрева (80 ± 2) °C;
 - баня песчаная;
 - баня водяная,
 - а также:
- Стеклянная аппаратура со шлифами для выделения и полного поглощения арсина (рисунок 1).

Примечание — В ГОСТ 9737 даны подробные характеристики конических и сферических стеклянных шлифов.

- 5.1.1 Коническая колба Ки-1-100-19/26 ТС по ГОСТ 25336 вместимостью 100 см³ для выделения арсина.
- 5.1.2 Соединительная трубка для поглощения сероводорода.
- 5.1.3 Абсорбер с пятнадцатью шаровыми расширениями.
- 5.2 Спектрофотометр *типа СФ* или
- 5.3 Фотоэлектрический абсорбциометр, снабженный фильтрами, обеспечивающими максимальное пропускание света длиной волны 520—560 им.

I — коническая колба; 2 — соединительная трубка; 3 — абсорбер

Рисунок 1 — Установка для выделения и поглощения арсина

6 Отбор и подготовка проб

Отбор и подготовка проб — по ГОСТ 127.3.

Пробу высушивают в течение 2 ч в сушильном шкафу при температуре 80 °C. После охлаждения в эксикаторе пробу измельчают до полного прохождения сквозь сито с сеткой номинальным размером отверстий 630 мкм (063 H) по ГОСТ 6613.

7 Методика определения

Предупреждение. Ввиду токсичности и неприятного запаха пиридина рекомендуется обращаться с ним осторожно и выполнять работы в хорошо вентилируемом вытяжном шкафу.

7.1 Приготовление анализируемого раствора

5 г анализируемой пробы (6) взвешивают с точностью до 0,1 г и помещают в химический стакан (вместимостью, например, 400 cm^3).

К анализируемой пробе добавляют 20 см³ раствора брома (4.9), дают отстояться в течение 45 мин, затем добавляют по капле, при незначительном помешивании, 25 см³ раствора азотной кислоты (4.10). При этом стакан охлаждают в смеси лед/вода, чтобы предотвратить излишне быстрое выделение нитрозных паров. Если происходит неполное окисление серы, от операцию можно повторить, используя несколько миллилитров раствора брома (4.9) и раствора азотной кислоты (4.10).

Содержимое стакана нагревают в кипящей водяной бане для удаления избытка брома, четыреххлористого углерода и азотной кислоты. Если раствор непрозрачный, его охлаждают, добавляют немного раствора азотной кислоты (4.10) и выпаривают до тех пор, пока не прекратится выделение нитрозных паров. Добавляют немного воды и выпаривают на песчаной бане до момента прекращения выделения паров серной кислоты. Эту операцию повторяют в течение 10 мин, чтобы удалить следы нитрозных соединений. Охлаждают, доливают водой до 80 см³ и снова охлаждают.

7.1.1 Содержание (массовая доля) мышьяка от 0,5 до 10 мг/кг (от 0,00005 до 0,001 %)

Анализируемый раствор (7.1) количественно переносят в мерную колбу с одной меткой вместимостью 100 см³, доливают водой до метки и перемешивают.

40,0 см³ раствора переносят в коническую колбу аппарата для определения содержания мышьяка. Добавляют 2 см³ раствора серной кислоты (4.1).

7.1.2 Содержание (массовая доля) мышьяка от 10 до 100 мг/кг (от 0,001 до 0,01 %)

Анализируемый раствор (7.1) количественно переносят в мерную колбу с одной меткой вместимостью 500 см³, доливают водой до метки и перемешивают.

20 см³ раствора переносят в коническую колбу аппарата для определения содержания мышьяка. Добавляют 10 см³ раствора серной кислоты (4.1) и такое количество воды, чтобы общий объем составил 40 см³.

7.2 Контрольный опыт

Параллельно с основным определением проводят контрольный опыт по той же методике и с таким же количеством всех реактивов.

7.3 Построение калибровочного графика

Калибровочный график следует строить каждый раз при использовании новой партии цинка, а также при приготовлении нового раствора диэтилдитиокарбамата серебра.

7.3.1 Приготовление контрольных растворов для фотометрических измерений в кювете с толщиной поглощающего свет слоя 1 см.

В шесть конических колб (5.1.1) отбирают соответствующие объемы стандартного раствора мышьяка (4.4), указанные в таблице 1.

В каждую колбу добавляют по 10 см^3 раствора серной кислоты (4.1) и такое количество воды, чтобы общий объем составлял $\sim 40 \text{ см}^3$. Добавляют 2 см^3 раствора йодида калия (4.6) и 2 см^3 раствора хлорида олова (II) (4.7), перемешивают и выдерживают в течение 15 мин.

4

Таблица 1

Объем стандартного раствора мышьяка (4.4),см ³	Соответствующая масса мышьяка, мкг	
0* 1,00 2,00 4,00 6,00 8,00	0,0 2,5 5,0 10,0 15,0 20,0	
* Компенсирующий раствор.		

В соединительную трубку (5.1.2) помещают поглощающую вату (4.5) для поглощения сероводорода, который может выделяться вместе с арсином.

Смазывают стеклянные шлифы смазкой, нерастворимой в пиридине, наливают 5,0 см³ раствора диэтилдитиокарбамата серебра (4.2) в абсорбер (5.1.3) и присоединяют к нему соединительную трубку (5.1.2) посредством предохранительного зажима.

Выдерживают абсорбер в течение 15 мин, добавляют через насыпную воронку в коническую колбу (5.1.1) 5 г цинка (4.8) и быстро собирают аппарат в соответствии с рисунком 1.

Выдерживают аппарат до тех пор, пока идет реакция (~ 45 мин).

Отсоединяют абсорбер (5.1.3), взбалтывают содержимое для растворения красного осадка, образовавшегося в нижней части колбы, и тщательно перемешивают раствор.

Цвет раствора остается устойчивым при отсутствии света в течение 2 ч, поэтому измерения проводят в течение этого времени.

7.3.2 Фотометрические измерения

Проводят измерения спектрофотометром (5.2) в максимуме кривой поглощения (длина волны 540 нм) или фотоэлектрическим абсорбциометром (5.3) с соответствующими фильтрами, устанавливая прибор в каждом случае на нулевое поглощение по компенсирующему раствору.

7.3.3 Построение калибровочного графика

При построении калибровочного графика по оси абсцисс откладывают содержание (массу) мышьяка в микрограммах в 5 см³ раствора контрольного опыта, и по оси ординат — соответствующее значение поглощения.

7.4 Определение

К 40 см³ анализируемого раствора (7.1), находящегося в конической колбе (5.1.1), добавляют 2 см³ раствора йодида калия (4.6) и 2 см³ раствора хлорида олова (II) (4.7), встряхивают и выдерживают в течение 15 мин.

Заканчивают определение в соответствии с 7.3.1.

7.4.1 Фотометрическое измерение

Фотометрическое измерение анализируемого раствора проводят в соответствии с 7.3.2, установив прибор на нулевое поглощение по раствору контрольного опыта (7.2),

8 Обработка результатов определения

По калибровочному графику (7.3.3) определяют массу мышьяка (As), соответствующую фотометрическому измерению анализируемого раствора.

Содержание мышьяка (As) в миллиграммах на 1 кг пробы вычисляют по формуле

$$\frac{m_1}{m_0}$$
. D, (1)

где m₁ — масса мышьяка, определенная по калибровочному графику, мкг;

 m_0 — масса анализируемой пробы (7.1), г;

Отношение объема раствора, приготовленного согласно 7.1.1 или 7.1.2, к объему аликвотной части, взятой для определения.

Примечания

1 Массовую долю мышьяка Х, %, допускается вычислять по формуле

$$X = \frac{m_I}{m_\theta} \cdot \frac{V_\theta}{V_I} \cdot \frac{1000}{10000000} = \frac{m_I}{m_\theta} \cdot \frac{V_\theta}{V_I} \cdot 10^{-4}$$
, (2)

где m₁ — масса мышьяка, определенная по калибровочному графику, мкг;

т_в — масса анализируемой пробы (7.1), г;

 V_{θ} — объем раствора, приготовленного согласно 7,1.1 или 7.1.2, см 3 ;

 V_1 — объем аликвотной части, взятой для определения согласно 7.1.1 или 7.1.2, см 3 .

 Результаты определения округляют до значащих цифр в соответствии с нормами, уст авленными стандартами или другим нормативным документом на техническую серу.

3 Как результат определения принимают среднее арифметическое результатов двух параллельных определений, относительное допускаемое расхождение между которыми не превышает 30 %.

Пределы допускаемой относительной суммарной погрешности результата определения ± 15 %.

9 Протокол определения

Протокол определения должен содержать следующие данные:

- ссылку на применяемый метод;
- результаты и применяемый метод их выражения;
- отклонения, замеченные во время определения;
- любую процедуру, не включенную в настоящий стандарт или считающуюся необязательной.

6

ПРИЛОЖЕНИЕ А (обязательное)

Применение цинка в форме проволоки

При необходимости использования по каким-либо причинам цинка в форме проволоки вместоцинка в форме дробинок в настоящий метод вносят следующие изменения:

- 4.8 «Цинк в форме проволоки диаметром от 2 до 3 мм».
 7.3.1 Третий абзац: «В каждую колбу добавляют по 10 см³ раствора серной кислоты и такое количество воды, чтобы общий объем составлял ~30 см³. Доливают ~2 см³ раствора йодида калия и 2 см³ раствора хлорида олова (II)».

Четвертый абзац: «Выдерживают аппарат до тех пор, пока идет реакция (в течение ~1 ч)».

УДК 661.21: 546.543.42:006.354

MKC 71.040.40

Л19

OKCTY 2109

Ключевые слова: техническая сера, проба, мышьяк, содержание, массовая доля, фотометрический метод, калибровочный график

Редактор Л.И. Нахимова
Технический редактор Н.С. Гришанова
Корректор М.С. Кабашова
Компьютерная верстка Е.Н. Мартеньяновой

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 10.06.99. Подписано в нечать 10.08.99. Усл. печ..лі ,40. Уч.-изд. л. 0,95. Тираж 213 экз.. С/Д 3638. Зак. 775.

ИПК Издательство стандартов, 107076, Москва; Колодезный пер., 14. Набрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — тип. "Московский печатник", Москва, Лядии пер., 6. Плр № 080102

