

ГОСУДАРСТВЕННЫЙ СТАНДА^{РТ} СОЮЗА ССР

ОКАТЫШИ ЖЕЛЕЗОРУДНЫЕ

МЕТОД ОПРЕДЕЛЕНИЯ НАБУХАНИЯ
ПРИ ВОССТАНОВЛЕНИИ

ГОСТ 26135—84 (СТ СЭВ 4080—83)

Издание официальное

РАЗРАБОТАН Министерством черной металлургии СССР

ИСПОЛНИТЕЛИ

И. Ф. Дворниченко, В. И. Манза

ВНЕСЕН Министерством черной металлургии СССР

Член Коллегии В. Г. Антилин

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ ПОСТАНОВЛЕНИЕМ Госудаоственного комитета СССР по стандартам от 29 марта 1984 г. № 1120

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ОКАТЫШИ ЖЕЛЕЗОРУДНЫЕ

Метод определения набухания при восстановлении

Iron ore pellets.

Method for determination
of reduction swelling

ГОСТ 26135—84

(CT C3B 4080-83)

OKCTY 0709

Постановлением Государственного комитета СССР по стандартам от 29 марта 1984 г. № 1120 срок действия установлен

до 01.01.85

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на железорудные окатыши (далее — окатыши) и устанавливает метод определения набухания при восстановлении.

Сущность метода заключается в восстановлении окатышей газообразным восстановителем в реакционной камере при заданном температурном режиме и определении их объема.

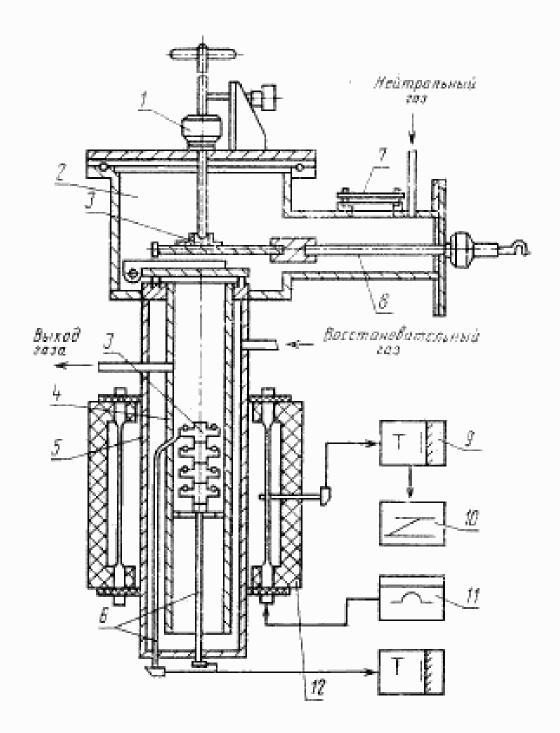
Стандарт полностью соответствует СТ СЭВ 4080—83

1. МЕТОД ОТБОРА ПРОБ

1.1. Отбор и подготовка проб — по ГОСТ 26136—84.

2. АППАРАТУРА

2.1. Для проведения испытания применяют:


установку (черт. 1), состоящую из камеры для восстановления окатышей (реакционной камеры) цилиндрической формы с внутренним диаметром 75 мм, изготовленной из термостойкой стали, камеры охлаждения, электропечи для создания температуры в реакционной камере до 1000°С, кассетного прободержателя, приборов для контроля и регулировки температуры нагрева пробы, системы подачи восстановительного газа в реакционную камеру;

Издание официальное

Перепечатка воспрещена (С) Издательство стандартов, 1984

Установка для определения набухания окатышей

I—съемник кассет: 2—камера для охлаждении; 3—кассета для окатыйей: 4—внутренияя стенка реакционной камеры; 5—внешния стенка реакционной камеры; 6—термопара; 7—люк для загрузки кассет; 8—шток водачи кассет; 9, 10, II—контрольно-измерительные приборы; I2—электроперь.

Черт. 1

весы технические с приспособлением для гидростатическоговзвешивания с погрешностью не более 0,05 г;

сита с квадратными ячейками размером 10 и 12,5 мм; шкаф сушильный с терморегулятором;

установку газогенераторную для получения восстановительного газа или баллоны с оксидом углерода;

баллоны с азотом или другим нейтральным газом.

3. ПОДГОТОВКА К ИСПЫТАНИЮ

3.1. Из пробы окатышей, высушенной при температуре $(105\pm5)^{\circ}$ С, отбирают 40 окатышей, не имеющих внешних механических повреждений и трещин, делят их на пять частей (по восемь окатышей) и каждую часть взвешивают. Определяют объем каждой части гидростатическим взвешиванием по ГОСТ 25732—83 или другим методом, обеспечивающим измерение объема с погрешностью не более 0,1 см³, и снова производят сушку окатышей при температуре (105±5) °С до постоянной массы.

4. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

- 4.1. Окатыши помещают в прободержатель, составленный изияти кассет (по восемь окатыщей в каждую кассету) и опускают с помощью съемника в реакционную камеру для проведения испытания.
- 4.2. Испытание проводят при следующих условиях: состав восстановительного газа — (33±0,5)% СО, (65±0,5)% N₂; допускаемые примеси—0,5% H₂, 0,1% O₂, 0,2% H₂O, 0,5% CO₂; объемная скорость подачи восстановительного газа в реакционную камеру — 15 дм³/мин;

температурный режим — за первые 40 мин от начала испытания температуру нагрева повыщают равномерно до 600°C, за последующие 140 мив — до 1000°C.

4.3. Закрывают верхнюю крышку реакционной камеры, включают контрольно-измерительные приборы, нагревательную печь и систему подачи восстановительного газа в реакционную камеру-Через 40 мин после начала нагрева и подачи газа выдвигают заслонку камеры охлаждения, поднимают съемником верхнюю кассету с окатышами из реакционной камеры в камеру охлаждения, задвигают заслонку и устанавливают на ней кассету с окатышами.

Охлаждают окатыши нейтральным газом до температуры 200°С, извлекают кассету с окатышами из камеры охлаждения и продолжают их охлаждение до комнатной температуры на воздухе. Затем окатыши взвешивают и определяют их объем.

Остальные кассеты с окатышами извлекают из реакционной камеры и определяют массу и объем окатышей последовательно через каждые 35 мин при температуре 700, 800, 900 и 1000°C.

5. OSPASOTKA PESYNSTATOB

5.1. Показатель набухания окатышей при восстановлении (ΔV) в процентах вычисляют по формуле

$$\Delta V = \frac{V_1 - V_0}{V_0} \cdot 100,$$

где V_1 — объем окатышей после восстановления, см³; V_0 — объем окатышей до восстановления, см³.

- Бместе с набуханием вычисляют абсолютную и фактическую степень восстановления.
- 5.2.1. Абсолютную степень восстановления (R_{a6z}) в процентах вычисляют по формуле

$$R_{a6c} = \frac{0.111 \cdot \text{FeO} + 0.430 \cdot \text{Fe}_{\text{wer}}}{0.430 \cdot \text{Fe}_{\text{obm}}} \cdot 100,$$

где FeO, Fe_{мет}, Fe_{обш} — содержание моноксида железа, металлического и общего железа в восстановительной пробе, %;

0,111 — коэффициент пересчета потери кислорода при восстановлении Fe₂O₃ до FeO;

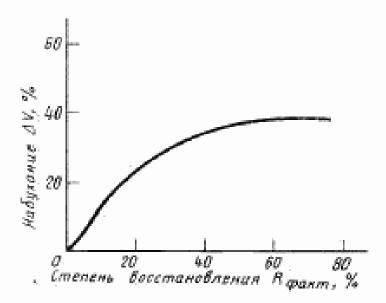
0,430 — коэффициент пересчета Fe_{общ} в пробе на эквивалентное количество кислорода, необходимое для окисления Fe_{общ} в Fe₂O₃.

Абсолютная степень восстановления может быть вычислена по потере массы пробы при восстановлении по формуле

$$R_{\rm a6c} = \left[\frac{0.111 {\rm FeO'} + 0.430 \, {\rm Fe}_{\rm mer}}{0.430 {\rm Fe}_{\rm obm}} + \frac{(m' - m) \cdot 100}{m' \cdot 0.430 {\rm Fe}_{\rm obm}} \right] \cdot 100,$$

где FeO', Fe'_{мет} Fe'_{общ}— содержание моноксида железа, металлического и общего железа в исходной пробе, %;

m' — масса исходной пробы, r;


т - масса восстановленной пробы, г.

5.2.2. Фактическую степень восстановления $R_{\phi a \kappa \tau}$ в процентах вычисляют по формуле

$$R_{\phi a \kappa \tau} = \frac{R_{a b c} - R'_{a b c}}{100 - R'_{a b c}} \cdot 100,$$

где R'_{abc} — абсолютная степень восстановления исходной пробы, которую вычисляют по формуле

$$R'_{a,6c} = \frac{0.111 \text{ FeO}' + 0.430 \text{ Fe}_{mer}}{0.430 \text{ Fe}_{n,6m}} \cdot 100.$$

Черт. 2

5.3. Результаты округляют до первого десятичного знака. 5.4. Зависимость набухания окатышей от фактической степени восстановления $\Delta V - f(R_{\phi\phi})$ выражают графически. Пример зависимости показан на черт. 2.

Редактор Н. Е. Шестакова Технический редактор Л. Я. Митрофанова Корректор В. М. Смирнова

Спано в наб. 06.04.84 Поди. в печ. 26.06.84 0,5 п. л. 0.5 усл. кр.-отт. 0,39 уч.-къд. л. Тир. 8000 Цена 3 коп.

Калужская типография стандартов, ул. Московская, 256. Зак. 1120

