КОКСЫ НЕФТЯНЫЕ И ПЕКОВЫЕ

Метод оценки микроструктуры

ГОСТ 26132—84

Petroleum and pitch cokes. Microstructure evaluation method

MKC 75.080 OKCTY 1909

Дата введения 01.07.85

Настоящий стандарт устанавливает метод оценки микроструктуры всех видов нефтяных и пековых коксов.

Сущность метода заключается в оценке микроструктуры коксов, основанной на сравнении микроструктур испытуемых образцов коксов с контрольной шкалой микроструктур.

(Измененная редакция, Изм. № 1).

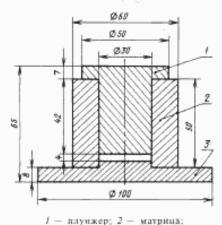
1. ОТБОР ПРОБ

1.1. Отбор проб — по ГОСТ 16799 и другой нормативно-технической документации. (Измененная редакция, Изм. № 1).

2. АППАРАТУРА, МАТЕРИАЛЫ И РЕАКТИВЫ

Микроскоп металлографический типа МИМ-7 или аналогичный, позволяющий работать в отраженном плоскополяризованном свете.

Ступка фарфоровая с пестиком № 2 по ГОСТ 9147.


Дробилка щековая ДЛЩ-80х150.

Сита с сеткой № 1, 2 и 4 по ГОСТ 6613 и ГОСТ 3306.

Электроплитка по ГОСТ 14919.

Электропечь сопротивления камерная лабораторная типа СНОЛ-1, 6, 2, 5, 1/11- ИЗ УХЛ 4.2.

Э — основание:

Кастрюля фарфоровая № 1 по ГОСТ 9147.

Шпатель фарфоровый № 1 по ГОСТ 9147.

Ложка фарфоровая № 2 по ГОСТ 9147.

Шеллак чешуйчатый.

Пресс-форма (чертеж).

Стекла матовые толстые размером 200x200x(6—15) мм (3 шт.).

Станок шлифовально-полировальный модели 38816 завода шлифовальных станков «Нерис» или другой полировальный станок с частотой вращения диска порядка 13,3 с⁻¹.

Весы лабораторные с погрешностью взвешивания не более 0.02 г по ГОСТ 24104*.

Микропорошки корундовые марок M-5 или M-7; M-14 и M-28 по ГОСТ 5744.

Окись хрома техническая по ГОСТ 2912.

Сукно арт. 3644 или драп «Деми».

(Измененная редакция, Изм. № 1).

Издание официальное

Перепечатка воспрещена

^{*} С 1 июля 2002 г. введен в действие ГОСТ 24104—2001.

3. ПОДГОТОВКА К АНАЛИЗУ

3.1. Подготовка проб

3.1.1. Объединенную пробу кокса, полученную по п. 1.1, дробят до размера зерен 0—10 мм, перемешивают и сокращают до 1 кг квартованием или при помощи механического делителя, затем снова перемешивают и квартованием сокращают до 0,1—0,2 кг. Если кокс поступил в сыром виде, то подготовленную пробу загружают в фарфоровые трубочки или стаканы (тигли), замазывают огнеупорной замазкой или плотно закрывают крышкой и загружают в нагревательную печь. Прокаливание велут в лабораторной камерной электропечи типа СНОЛ, нагревая до (900±20) °С со скоростью 8—10 °С/мин. По достижении температуры 900 °С выдерживают в течение 1 ч, после чего охлаждают вместе с печью до комнатной температуры и выгружают кокс. Допускается прокаливание проводить по ГОСТ 22898. Пробу прокаленного кокса рассеивают через сита с сетками № 2 и 4. Частицы кокса, не прошедшие через сито с сеткой № 4, измельчают до получения зерен размером 2—4 мм. Частицы кокса размером менее 2 мм отбрасывают. Зерна размером 2—4 мм, полученные при первом, втором и последующих рассевах, соединяют и тщательно перемешивают. Из подготовленной средней пробы отбирают квартованием 6—8 г кокса для приготовления одного штабика.

(Измененная редакция, Изм. № 1, 2).

3.2. Приготовление шлифов-штабиков

3.2.1. Прессование

6—8 г подготовленной пробы помещают в фарфоровую кастрюлю и нагревают на электроплитке до температуры плавления шеллака (60±5) °С. К нагретому коксу прибавляют предварительно измельченный и просеянный через сито с сеткой № 1 шеллак в количестве ¹/₃—¹/₂ объема кокса. Смесь по мере плавления шеллака тщательно перемешивают шпателем до образования однородной массы. Полученную массу помещают в пресс-форму (см. чертеж) и прессуют вручную с помощью плунжера в течение 10—15 с. Снимают матрицу с основания и плунжером выталкивают из нее готовый штабик. Для анализа из каждой пробы готовят два штабика. Допускается готовить один штабик, подвергая обработке оба торца штабика, как указано ниже, и анализируют каждый шлиф самостоятельно. Штабики хранят в пакетах из плотной бумаги по ГОСТ 2228, ГОСТ 8273 или из другой, обеспечивающей сохранность пробы.

3.2.2. Шлифование

Приготовленные штабики шлифуют вручную движением по восьмерке на матовых стеклах с последовательным использованием смоченных водой корундовых микропорошков марок М-28; М-14; М-7 или марки М-5. Шлифование всегда начинают с более крупного микропорошка. Допускается шлифование на шлифовально-полировальном станке на алмазных эластичных дисках марки АЭДД и на металлических кругах, обтянутых наждачной водоупорной бумагой, которую в процессе шлифования заменяют, переходя от более крупного зерна к мелкому.

При переходе одного порошка к другому шлифуемую поверхность штабика промывают водой до удаления остатков микропорошка, чтобы не перенести более крупный микропорошок или загрязнение в последующую стадию обработки. Процесс шлифования считают законченным, если на поверхности штабика нет видимых царапин, завалов и на ней четко видиы границы зерен.

3.2.3. Полирование

Отшлифованные штабики полируют на полировальном станке, диск которого покрыт сукном или драпом «Деми», легким нажимом на образец, применяя водную суспензию окиси хрома (15—20 г/дм³). Отполированный шлиф-штабик промывают водой и дополнительно полируют на чистом увлажненном сукне до однородного блеска всей его поверхности, при осмотре поверхности под микроскопом на ней не должно быть царапин и должны отчетливо различаться структурные составляющие.

На боковую поверхность отполированных и высущенных штабиков наклеивают этикетку из лейкопластыря или бумаги с маркировкой проб; готовые полированные штабики хранят в картонных коробках упакованными в вату или поролон.

3.2.1—3.2.3. (Измененная редакция, Изм. № 1).

4. ПРОВЕДЕНИЕ АНАЛИЗА

- 4.1. Микроскоп настраивают для работы в отраженном плоскополяризованном свете в соответствии с инструкцией и устанавливают увеличение 90°—100°.
- 4.2. Оценку микроструктуры кокса, наблюдаемую на экране или в окуляре микроскопа, проводят методом сравнения, пользуясь контрольной шкалой микроструктур и таблицей (см. приложения 1—2), перемещая шлиф-штабик перед объективом микроскопа через одинаковые интервалы с помощью микровинтов предметного стодика. Микроструктуру в каждом поле зрения оценивают в баллах по преобладающей структурной составляющей или средневзвешенной величине, если в поле зрения две или более структурных составляющих.

Оценку микроструктуры кокса марки КНПС допускается проводить в точке, попадающей в перекрестие нитей линейной окулярной вставки или в узлы окулярной вставки с квадратной сеткой.

4.3. Суммарное число анализируемых полей зрения для каждого штабика должно быть не менее 30 при равномерном распределении их в плоскости шлифа.

При оценке микроструктуры кокса марки КНПС количество точек для каждого штабика должно быть не менее 60 при равномерном распределении их в плоскости шлифа.

4.1—4.3. (Измененная редакция, Изм. № 1).

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

 Оценку микроструктуры (Б) в баллах вычисляют по формуле с точностью до второго десятичного знака с последующим округлением до первого десятичного знака

$$\mathcal{E} = \frac{\sum_{j=1}^{n} \mathcal{E}_{j}}{n},$$

где δ_i — оценка структуры i-го поля зрения, балл;

количество проанализированных полей эрения, шт.

5.2. За результат испытания принимают среднеарифметическое двух параллельных определений (анализ двух шлифов-штабиков или одного штабика, отшлифованного с обоих торцов), выраженное в баллах и округленное до первого десятичного знака.

(Измененная релакция, Изм. № 2).

5.1.1. Точность метода

Сходимость

Два результата параллельных определений, полученные одним исполнителем в одной лаборатории, считают достоверными (при доверительной вероятности 95 %), если расхождение между ними не превышает 0,2 балла для коксов с оценкой микроструктуры до 5 баллов и 0,3 балла — для коксов с оценкой микроструктуры выше 5 баллов. При получении результатов с расхождениями выше допустимого проводят третье определение и за результат принимают среднеарифметическое двух наиболее близких по значению определений (в пределах допустимого расхождения).

Воспроизводимость

Два результата испытаний, полученные в двух разных лабораториях на одной и той же пробе, считают достоверными (при доверительной вероятности 95 %), если расхождение между ними не превышает 0,3 балла для коксов с оценкой микроструктуры до 5 баллов и 0,5 балла — для коксов с оценкой микроструктуры выше 5 баллов.

(Введен дополнительно, Изм. № 2).

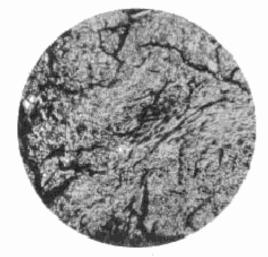
 5.3. Для оценки однородности кокса и определении преобладающей структурной составляющей строят гистограмму (пример построения гистрограммы приведен в приложении 3).

6. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

6.1. В соответствии с ГОСТ 12.1.007 нефтяной кокс относится к четвертому классу опасности. Предельно допустимая концентрация углеродной пыли в воздухе рабочей зоны производственных помещений 6 мг/м² по ГОСТ 12.1.005. Анализ проб воздуха на содержание углеродной пыли следует проводить в соответствии с ГОСТ 12.1.016.

- 6.2. В связи с тем, что нефтяной игольчатый кокс относится к четвертому классу опасности, специальных требований к утилизации и удалению отходов анализа не предъявляется.
- 6.3. Реактивы, абразивы и исходные материалы должны использоваться в соответствии с нормативно-технической документацией на их применение.
- 6.4. Организация рабочего места должна соответствовать требованиям ГОСТ 12.2.032 и ГОСТ 12.2.033.
- 6.5. Лабораторные помещения, в которых выполняют анализ, должны быть оборудованы вентиляционными системами по ГОСТ 12.4.021, обеспечивающими чистоту воздуха рабочей зоны в соответствии с требованиями ГОСТ 12.1.005.

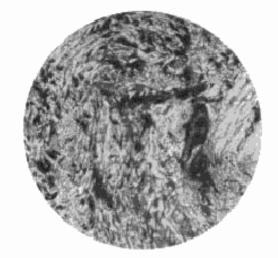
Лабораторные помещения, в которых проводят испытания, относятся к категории пожарной опасности группы В и должны соответствовать ГОСТ 12.1.004. Для ликвидации возникающих очагов пожара в соответствии с ГОСТ 12.4.009 должны использоваться первичные средства пожаротушения: огнетушители, ящики с песком, а также пожарные краны.


- 6.6. Все работы с нефтяными коксами (отбор и подготовка проб) необходимо проводить с применением средств индивидуальной защиты (халаты хлопчатобумажные, перчатки, противопылевые респираторы типа «Лепесток» по ГОСТ 12.4.028) в соответствии с типовыми отраслевыми нормами выдачи спецодежды, спецобуви и предохранительных приспособлений, утвержденных Государственным комитетом СССР по труду и социальным вопросам.
- 6.7. Эксплуатация электроприборов должна соответствовать правилам технической эксплуатации электроустановок, правилам техники безопасности при эксплуатации электроустановок потребителем, утвержденным Главгосэнергонадзором, ГОСТ 12.1.019 и ГОСТ 12.2.007.0.

КОНТРОЛЬНАЯ ШКАЛА Балл 1 Балл 2 Балл 5 Балл 9 Балл: 8

ПРИЛОЖЕНИЕ I Обязательное

МИКРОСТРУКТУР (Ув. 100-)


Балл 3

Бала 6

Балл 10

Балл 4

Балл 7

Градация структурных составляющих в нефтявых коксах

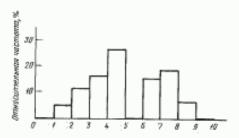
Балл	Характеристика структурных составляющих	Размер волокиа, мкм
1	Изогропная (точечная), характеризуется однородной структурой с одновременным затуханием всех структурных элементов при скрещива- нии николей	Менее 3
2	Весьма мелковолокнистая, характеризуется однородной структурой с существованием границ между структурными элементами	3—10
3	Мелковолокинстая	1015
4	Средневолокнистая	15-35
5	Крупноволокнистая (лепестковая) без какой-либо ориентации структурных элементов	3570
6	Мелкоигольчатая, характеризуется наличием групп ориентирован- ных волокон, в поле зрения расположенных хаотически	70-200
7.	Средненгольчатая, характеризуется наличием групп ориентирован- ных волокон	200-400
8	Средненгольчатая с большим размером волокон	400600
9.	Крупноигольчатая с шириной волокон менее 3,0 мкм	Более 600
10	Крупноигольчатая с шириной волокон более 3,0 мкм	Более 600

ПРИЛОЖЕНИЯ 1, 2. (Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ З Справочное

Пример построения гистограммы

Балл	I	2	3	4	5	6	7 .	8	g	10	Сумма
Частота оценки мик- роструктуры кокса	0	3	.7	10	16	Ø	9	11	4	0	60
Относительная частота, %	ò	5.	12	17	27	0	15	18	7	0	100


Относительную частоту (4) в процентах вычисляют по формуле

$$\mathcal{G}=\frac{n\cdot 100}{60}\,,$$

где п - частота оценки микроструктуры кокса каждым из баллов;

. 60 — количество полей зрения при анализе двух штабиков.

Гистограмма распределения по структурным составляющим

Оценка микроструктуры, балл.

47

ПРИЛОЖЕНИЕ 3. (Измененная редакция, Изм. № 2).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством метадлургии СССР
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 28.03.84 № 1059
- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначения НТД,	Номер раздела,	Обозначение НТД,	Номер раздела,
на который дана семлки	пункта	на который дана ссылка	пункта
FOCT 12.1.004—91 FOCT 12.1.005—88 FOCT 12.1.007—76 FOCT 12.1.016—79 FOCT 12.1.019—79 FOCT 12.2.007.0—75 FOCT 12.2.032—78 FOCT 12.2.033—78 FOCT 12.4.009—83 FOCT 12.4.021—75 FOCT 12.4.028—76	6.5 6.1, 6.5 6.1 6.1 6.7 6.7 6.4 6.4 6.5 6.5	FOCT 2228—81 FOCT 2912—79 FOCT 3306—88 FOCT 5744—85 FOCT 6613—86 FOCT 8273—75 FOCT 9147—80 FOCT 14919—83 FOCT 16799—79 FOCT 22898—78 FOCT 24104—88	3.2.1 2 2 2 2 3.2.1 2 2 1.1 3.1.1

- 5. Ограничение срока действия сиято Постановлением Госстандарта от 30.03.92 № 341
- 6. ИЗДАНИЕ с Изменениями № 1, 2, утвержденными в январе 1990 г., марте 1992 г. (ИУС 4-90, 7-92)

