ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

АНТРОПОГЕННОЕ НИЗКОЧАСТОТНОЕ ВОЛНОВОЕ ВОЗДЕЙСТВИЕ НА ИОНОСФЕРУ И МАГНИТОСФЕРУ ЗЕМЛИ

ПРОСТРАНСТВЕННО-ВРЕМЕННЫЕ И СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ

Издание официальное

ГОССТАНДАРТ РОССИИ Москва

Предисловие

- РАЗРАБОТАН Институтом земного магнетизма, ионосферы и распространения радиоволи Российской Академии наук и Всероссийским научно-исследовательским институтом стандартизации Госстандарта России
- 2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 08.08.95 № 428
 - 3 ВВЕДЕН ВПЕРВЫЕ

© ИПК Издательство стандартов, 1995

настояни и стандарт не может быть полностью или частичы. выспроизведен, тиражирован и распространен в качестве официального издания без разрешения Госстандарта России

П

FOCT P 25645.162-95

Содержание

1 Область применения	 3
2 Нормативные ссылки	 2
3 Термины и определения	 2
4 Общие положения	 7
5 Основные сведения о методах измерений	 4
Приложение А. Характеристики низкочастотного излучения	
наземных ОНЧ-передатчиков	 5
Приложение Б. Интенсивность потоков высыпающихся	
электронов и направленных вверх нонов	 6
Приложение В. Характеристики излучения на гармоника	
лэп	7
Приложение Г. Координаты и параметры наземных	
ОНЧ-передатчиков	 5

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

АНТРОПОГЕННОЕ НИЗКОЧАСТОТНОЕ ВОЛНОВОЕ ВОЗДЕЙСТВИЕ НА ИОНОСФЕРУ И МАГНИТОСФЕРУ ЗЕМЛИ

Пространственно-временные и спектральные характеристики

Anthropogenic low-frequency wave influence on the Earth ionosphere and magnetosphere.

Spatial-time and spectral responses

Дата введения 1996-01-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт устанавливает количественные характеристики интенсивности низкочастотного волнового электромагнитного излучения (далее — низкочастотного излучения) в ионосфере и магнитосфере Земли, возникающего в результате воздействия на ионосферу искусственного волнового излучения (наземные ОНЧ-передатчики, высоковольтные линии электропередач), потоков высыпающихся электронов, направленных вверх ионов, а также пространственные масштабы области волнового воздействия ОНЧ-передатчиков на ионосферу.

Стандарт предназначен для определения воздействия низкочастотного электромагнитного излучения, потоков высыпающихся электронов и направленных вверх ионов, возникающих в результате искусственного волнового излучения с поверхности Земли, на техничеткие устройства в космическом пространстве, для проектирования средств радиосвязи и радионавигации, а также для идентификации источников волнового воздействия на ионосферу. Стандарт распространяется на высоты H = 1000 - 2000 км.

Стандарт распространяется на частоты излучения частот f = 15, 4,5 и 0,8 кГц для работы с ОНЧ-передатчиками и частоты f = 9,6 и 3,2 кГц для работ с линиями электропередах.

Стандарт разработан для источников искусственного волнового воздействия по их состоянию на 1992 г.

Издание официальное

實

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 24375-80 Радиосвязь. Термины и определения

ГОСТ 25645.103-84 Условия физические космического пространства. Термины и определения

ГОСТ 25645.109—84 Магнитосфера Земли. Термины и определения

ГОСТ 25645.119—84 Излучения в магнитосферс волновые. Пространственно-временные и спектральные характеристики

з термины и определения

Очень низкие частоты (ОНЧ)	Радиочастота 3-30 кГц (ГОСТ 2437580)
Полосовой фильтр	 Электрический частотный фильтр, имеющий полосу пропускания,
Ионосфера Земли	расположенную между двумя частотами среза (ГОСТ 24375—80) — Область атмосферы Земли на высотах 30—1000 км, содержащая
Магнитосфера Земли	частично ионизованьую холодную плазму (ГОСТ 25645.103—84) — Область околоземного пространст- ва, занятая геомагнитным полем
Энергичные частицы	 (ГОСТ 25645.103—84) Электроны й ионы с энергиями, превышающими среднюю тепловую (ГОСТ 25645.109—84)
Магнитосопряженная область (МСО)	 Область ионосферы в противопо- ложном полушарии Земли, нахо- дящаяся в одной силовой трубке с областью ионосферы над пере- датчиком

4 общие положения

4.1 Распределение интенсивности низкочастотного излучения искусственного происхождения, а также потоков высыпающихся электронов и направленных вверх ионов в ионосфере Земли на

2

высотах h = 1000-2000 км, возникающих в результате воздействия ОНЧ-передатчиков, представлено в виде эмпирических результатов, полученных на различных спутниках, но с помощью однотипной аппаратуры. Основные сведения о методах измерений и точности приведены в разделе 5.

- 4.2 Условия возбуждения и распространения низкочастотного излучения существенно различны в различных диапазонах частот. Поэтому значения интенсивности низкочастотного излучения наземных ОНЧ-передатчиков приведены для разных частот (для несущей частоты передатчика, а также для частот индуцированных излучений без конкретизации механизмов геверации),
- 4.3 Сигнал в зоне искусственного волнового воздействия вычисляется относительно уровня фонового низкочастотного излучения, который определяется по измерениям вблизи зоны искусственного волнового воздействия и по ГОСТ 25645.119. При этом использовались результаты экспериментов над всеми известными работающими ОНЧ-передатчиками (около 30 передатчиков). Так как Р-мощность ОНЧ-передатчиков различна, а амплитуды магнитной и электрической компоненты на нижней границе ионосферы зависят от Р как P^{1/2}, результаты измерений нормированы на P^{1/2}. Результаты измерений относятся к условиям умеренной геомагнитной возмущенности ($K_{\rm p}$ < 3, $K_{\rm p}$ — трехчасовой планетарный индекс геомагнитной активности). Спутниковые измерения сигналов на гармониках ЛЭП проводились в средних широтах северного полушария, для спокойных геомагнитных условий ($K_0 < 2$). В возмущенных геомагнитных условиях вероятность выделения сигналов на гармониках ЛЭП значительно уменьшается,
- Потоки высыпающихся электронов из магнитосферы в ионосферу и потоки направленных вверх ионов под воздействием излучения мошных ОНЧ-передатчиков также определялись относительно фоновых значений вблизи зовы искусственного волнового воздействия. Значения потоков также приведены для условий умеренной геомагнитной возмущенности. В условиях возмущенности потоки высыпающихся электронов и направленных вверх ионов могут значительно возрастать.
- 4.5 Характеристики низкочастотного излучения наземных ОНЧпередатчиков приведены в приложении А.

Интенсивность потоков высыпающихся электронов и направлевных вверх ионов, возникающих под действием работы ОНЧ-передатчиков, приведена в приложении Б.

Характеристики излучения на гармониках ЛЭП в зависимости от местного времени и различных сезонов года приведены в приложении В.

Координаты наземных ОНЧ-передатчиков и их параметры приведены в приложении Г.

5 ОСНОВНЫЕ СВЕДЕНИЯ О МЕТОДАХ ИЗМЕРЕНИЙ

- 5.1 Для регистрации в ионосфере электромагнитных излучений в диапазоне частот 0.02-22 к Γ ц применяются низкочастотные волновые комплексы, в которых используются полосовые фильтры по электрической и магнитной компонентам на частотах 0.14; 0.45; 0.8; 3.2; 4.65; 9.6 и 15 к Γ ц с полосой $\Delta F = 1/8$ $F_{\rm центр}$ (для различных спутников набор фильтров может быть различным). Чувствительность по электрической компоненте составляет обычно $(3-5) \times 10^{-7}$ В/м Γ ц $^{1/2}$, а по магнитной 10^{-5} н T/Γ ц $^{1/2}$. Динамический диапазон 60 д6.
- 5.2 Потоки низкоэнергичных частиц измеряются дифференциальным электростатическим спектрометром. Разрешающая способность по энергиям в отдельных каналах составляет приблизительно 7 %. Массовый состав ионов измеряется масс-спектрометром.

G D 5 T

ПРИЛОЖЕНИЕ A (справочное)

ХАРАКТЕРИСТИКИ НИЗКОЧАСТОТНОГО ИЗЛУЧЕНИЯ НАЗЕМНЫХ ОНЧ-ПЕРЕДАТЧИКОВ

Средняя и максимальная спектральная плотность абсолютных величин напряженности электрического поля E, спектральная плотность абсолютных величин индукции магнитного поля B для частот 15; 4,5 и 0,8 кГц и максимальные значения пространственных масштабов области везмущения над передатчиками по широте $\delta \lambda$ и те же характеристики пля областей, магнитосопряженных передатчикам, приведены в таблице A.1.

Таблина А.1.

Значение спектрыльной	E, NKB/N	- «Па ^{1/2} чистоты,	кВт ^{1/2} , кГц	B, в $\mathrm{Ta/sGu}^{1/2}$ - $\mathrm{sBr}^{1/2}$, для частоты.			3.8	
плотности	15,0	4,5	0.8	15,0	4,5	0,8		
	Области над передатчиками							
Среднее Максимальное	1.2 2.8	0,9 2.4	0.8 1.7	$4.8 \cdot 10^{-5}$ $8.8 \cdot 10^{-5}$	2,5 · 10 ⁻⁵ 7,8 · 10 ⁻⁵	2.9 · 10 ⁻⁵ 7.0 · 10 ⁻⁵	ð. 9.	
Области, магнитосопряженные передатчикам								
Среднее Максимальное	1.0 2.6	0,6 2,4	8,0 1.1	$\frac{3.4 \cdot 10^{-5}}{8.3 \cdot 10^{-5}}$	1,8 · 10 ⁻⁵ 7,2 · 10 ⁻⁵	$2.0 \cdot 10^{-5}$ $5.4 \cdot 10^{-5}$	10°	

ПРИЛОЖЕНИЕ Б (спривочние)

ИНТЕНСИВНОСТЬ ПОТОКОВ ВЫСЫПАЮЩИХСЯ ЭЛЕКТРОНОВ И НАПРАВЛЕННЫХ ВВЕРХ ИОНОВ

Максимальные значения интенсионости потоков высывающихся электронов I и максимальные значения пространственных масштабов области возмущения по широте $\delta \lambda$ и смещения возмущенной живы по цироте к экватору $\delta \varphi$ приведены в габлице i.

Таблица Б.1.

Наименование показателя	Энергия электронов, кэй			
	0,25-0,33	1-2	8-21	
Интенсивность потока <i>I</i> , (сч ⁸ с ср - кэВ) ^{−1}	105	5 - 104	5 10	
40бласть возмущения <i>8</i> й	7	6.	5°	
Смещение по широте д ф	41	4*	3'	

Максимальный поток направленных вверх новов в диапазоне эвериий 0.25-0.33 кий и области регистрации $\delta \lambda$, равной 6° , зарегистрирован. $(cM^2-c-cp-k3B)^{-1}$

для
$$H^* = 10^5$$
:
для $He^* = 6 - 10^4$;
для $O^* = 8 \cdot 10^5$.

ПРИЛОЖЕНИЕ В (справочное)

ХАРАКТЕРИСТИКИ ИЗЛУЧЕНИЯ НА ГАРМОНИКАХ ЛЭП

Характеристиками излучения на гармониках ЛЭП являются интенсивность излучения и вероятность его выделения над фоновым уровнем.

Распределение максимальной интенсивнести излучения W_{max} на гармониках ДЭП для различных сезонов года, местного времени и интерпала имрот относительно интенсивности фонового излучения приведено в таблице В.1.

Вероятность выделения излучения на тармониках ЛЭП с интенсивностью W > 40 и 60 дБ для различных сезонов года и долготных секторов приведена в таблице В.2.

Таблица В.І.

		$W_{\rm BHZ}$, дВ, для частоти	s, sfu		
Врема Т. ч		9,6				
время г, ч		Лето			Асто	
	40-45° c.m.	35-40° c.w.	3035° с.ш.	35-40° c.m.	35 40° c.us	
00	48	41	40	45	42	
0i	48	58	53	38	44	
0/2	50	51	45	55	39	
03	62	51	5.8	49	36	
04	46	48	4.5	33	32	
0.5	5,5	71	66	33	38	
06	63	46	40	42	19	
07	70	62	40	50	32	
08	30	44	46	44.	40	
09	42	38	32	46	31	
10	45	42	38	31	32	
1.1	52	52	46	28	30	
12	48	60	40	24	52	
1.3	3.2	35	31	38	28	
14	55	42	36	26	41	
1.5	52	45	32	2.3	45	
16	54	56	40	- 64	44	
17	.58	46	54	42	42	
18	58	50	44	41	39	
19	52	50	48	57	50	
20	52	46	52	32	52	
21	45	46	46	41	45	
22	47	56	52	33	47	
23	48	.60	48	34	38	

FOCT P 25645.162-95

Таблица В.2

	Вероятность Р. %					
8.2	Зн	u)	Лето			
	W > 60 aE	W > 40 aB	W > 60 aS	W > 40 дE		
0-10"	30	12	34	14		
1020"	42	11	43	9		
20-30"	3.5	12	59	34		
3040"	38	16	64	33		
4050	32	14	60	38		
5060	24	13	.58	45		
60-70	24	25	60	36		
70-80	25	27	64	50		
8090"	2.5	16	40	17		
90-~100"	23	14	37	17		
100110*	22	16	40	1.8		
110120*	38	1.5	37	1.5		
120130°	30	1,1	39	19		
130 140"	42	17	38	22		
140~150*	37	17	54	20		
150160)	36	14	38	11		
160-1701	3.5	1.5	39	9		
1701801	36	1.0	38	18		
1801901	30	8	42	10		
196 2004	28	9	39	16		
200210"	16	7	38	12		
210220*	21	9	40	18		
220-230*	12	4	38	20		
230-240'	12	3	42	18		
240-250	11	6	5.5	38		
250260"	6	2	66	46		
260270*	27	8	56	28		
270-280	26	1.5	67	28		
280290-	26	3	55	39		
290300"	15	5	44	1.8		
300-310	17	2	36	22		
310320'	12	3	23	24		
320330"	15	13	23	12		
330340"	20	7. 5	40	14		
340350"	25		40	26		
350360*	38	13	49	18		

ПРИЛОЖЕНИЕ Г (справочное)

КООРДИНАТЫ И ПАРАМЕТРЫ НАЗЕМНЫХ ОНЧ-ПЕРЕДАТЧИКОВ

Координаты и параметры наземных ОНЧ-передатчиков приведены в таблице Г.1.

Таблица Г.І.

Типы передатенков	Долгота х	Шерота ≠	Мошность, кВт	Частота, кГи
ОМЕГА-передатчики				
1 A	13,09* В.Д.	66,25° C.III.	20	10,2-13,6
2 B	10.39° З.Д.	6.18° C.III.	10	10,2-13,6
3 C	157,50° З.Д.	21,24° C.III.	20	10,2-13,6
4 D	98,20° 3.H.	46,21° C.III.	20	10,2-13,6
5 E	55,17° В.Д.	20,58° tO.III.	15	10,2-13,6
6 F	66.11° З.Д.	43.03° Ю.Ш.	20	10.2-13.6
7 G	146,56° В.Д.	30,20° 10.111.	20	10,2-13,6
8 H	129,27 В.Д.	34. 37 С.Ш.	10	10,2-13.6
АЛЬФА-передатчики				
9 Комсомольск-на-Амуре	136.58° В.Л.	50.34° C.III.	500	11.9-15.6
10 Красновар	38,39° В.Д.	45,02° C.III.	500	11,915,6
11 Новосибирск	82,58° В.Д.	55,04° C.III.	500	11,915,6
Связные передатчики				
12 YTP-3	43,56° В.Д.	56,17° C.III.	1000	13.7
13 NAA	67.17° З.Д.	44,39° C.III.	1000	14,1-25,8
14 УБЕ-2	158,39° В.Д.	52,55° C.III.	500	14,3-17,9
15 NPN	144,47' З.Д.	13,29- С.Ш.	1000	14.7-19.4
16 NPM	158,09° З.Д.	21,25° C.III.	1000	14,7-26,1
17 NLK	121,551 З.Д.	48,12° C.UI.	1000	14.7-24.8
18 NHB	152.30° З.Д.	57,45° C.III.	1000	14,7-19,4
19 NBA	79,39° З.Д.	9,04° C.III.	1000	14,924,0
20 NWC	114.09' В.Д.	21.47° Ю.Ш.	1000	15,5-22,03
21 EWB	30,44" В.Д.	46,29° C.III.	1000	15,6
22 NSS	70,37° З.Д.	38,59° C.III.	1000	15,7-25,8
23 NPL	117,05 3.Д.	32,44° C.III.	500	15,719,8
24 NPG	122,16° З.Д.	38.06° C.III.	500	15,7-26,1
25 GBR	1,11° З.Д.	52,22° C.111.	650	16,0-19.6
26 УГК	20,30° В.Д	54,40° C.III.	500	16,2
27 YMC	37.18 В.Д	55,49° C.III.	1000	17,1
28 УПД-8	33,05 В.Д	68,58° C.III.	1000	18,1
29 УМБ	39.48° В.Д	57,14° C.III.	1000	18,9

УДК 629.78:006.354 ОКС 07.040 Т27 ОКСТУ 0080

Ключевые слова: ОНЧ-передатчики, низкочастотное волновое излучение, потоки частиц, излучение на гармониках ЛЭП, магнитосопряженная область

Редактор Р.С. Федорова
Технический редактор О.Н. Никитина
Корректор В.И. Варенцова
Компьютерная верстка В.И. Грищенко

Сдано в набор 14.09.95. Подписано в печать 18.10.95. Усл. печ. л. 0.93. Усл. кр.-отт. 0.93. Уч.-изд. л. 0.65. Тираж 230 экз. С 2916. Зак. 6127.

ИПК Издательство стандартов 107076, Москва, Колодезный пер., 14. ДР № 021007 от 10.08.95. лабрано в Издательстве на ПЭВМ

Филиал ИПК Издательство стандартов — тип. "Московский печатник" Москов, Лялин пер., 6.

