

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГАММА-ИЗЛУЧЕНИЕ СОЛНЕЧНОЕ

энергетический спектр ГОСТ 25645.148—89

Издание официальное

. 100 E

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО УПРАВЛЕНИЮ КАЧЕСТВОМ ПРОДУКЦИИ И СТАНДАРТАМ

Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГАММА-ИЗЛУЧЕНИЕ СОЛНЕЧНОЕ Энергетический спектр

ΓΟCT 25645.148—89

Solar gamma-radiation, Energy spectrum

DKCTY 0080

Дата введения 01.01.91

Настоящий стандарт устанавливает эмпирическую модель, определяющую временные и спектральные характеристики потоков фотонов солнечного гамма-излучения (СГИ) при солнечных вспышках и их отсутствии, для оценки воздействия в космическом пространстве СГИ на технические, биологические и другие объекты.

Термины, применяемые в настоящем стандарте, и их пояснения приведены в приложении 1.

1. Спектр фотонов СГИ при солнечных вспышках представляют в виде совокупности дискретного излучения в диапазоне энергий фотонов от 0,5 до 15 МэВ и непрерывного излучения в диапазоне энергий фотонов от 0,3 до 100 МэВ.

Спектр фотонов СГИ при отсутствии вспышек (фоновое излучение) представляют в виде дискретного излучения в диапазоне энергий фотонов от 0,5 до 3 МэВ.

Спектральные характеристики потока фотонов СГИ опреде-

ляют следующими параметрами: Е — энергия фотона СГИ, МэВ:

F — интегральный за вспышку поток фотонов СГИ, фотон/см²;

f — плотность потока фотонов СГИ, фотон/см²-с;

g — спектральная плотность потока фотонов СГИ, фотон/см²с∙МэВ.

Спектр фотонов СГИ во время вспышки представляют в виде суммы дискретного и непрерывного спектров.

Издание официальное

Перепечатка воспрещена

С Издательство стандартов, 1990

Интегральный за вспышку поток фотонов СГИ, превышающий 0,5 фотон/см², для дискретного спектра приведен в табл. 1, в которой приведены средние значения интегрального за вспышку потока фотонов, обеспечивающие точность расчетов с указанными погрешностями с доверительной вероятностью 80 %.

Таблица 1

E. MsB	фотен/сы»	Моканизм излучения СГИ
0,511	50±10	Аннигиляция электрон-позятронных пар
2,220	85±18	Радиационный захват нейтрона водо- родом
4,430 6,140	150±27	Излучение возбужденного ядра С ¹² Излучение возбужденного ядра О ¹⁶

Интегральный за вспышку поток фотонов СГИ дискретного спектра для любого диапазона от 0,5 до 15 МэВ считают как сумму потоков по отдельным линиям, пользуясь данными табл. 1 и приложения 2 (табл. 3).

3. Для определения параметров потока фотонов непрерывного спектра СГИ при вспышке диапазона энергий от 0,3 до 100 МэВ

разделяют на два участка:

на первом — спектральную плотность потока фотонов СГИ в диапазоне энергий от 0,3 до 6 МэВ включительно вычисляют по формуле

$$g = BE^{-S}, (1)$$

где $B = 0.46 \pm 0.03$, $S = 1.8 \pm 0.2$.

Числовые значения, приведенные в формуле (1), обеспечивают точность расчета с указанными погрешностями с доверительной вероятностью 95 %;

на втором — в днапазоне энергий свыше 6 до 100 МэВ интегральный за вспышку поток фотонов СГИ принимают равным (15+0.2) фотонов станов станов

(1,5±0,3) фотон/см².

4. Максимальную плотность потока фотонов СГИ в области энергий от 0,5 до 3 МэВ при отсутствии вспышек принимают рав-

ной 10-5 фотон/см²-с.

Характеристики компонентов фонового излучения СГИ, обусловленных распадом радиоактивных ядер в атмосфере Солнца, для проведения более точных расчетов с детальной оценкой воздействующих факторов приведены в приложении 2 (табл. 4).

5. Временные характеристики вспышки, состоящей из всплесков СГИ, определяют следующими параметрами:

Т — средняя длительность вспышки СГИ, с;

- т средняя длительность всплеска СГИ за вспышку, с;
- п среднее число всплесков СГИ за вспышку, вычисляемое по формуле

$$n = \frac{T}{t}.$$
 (2)

6. Среднее значение длительности вспышки СГИ для $E \le 10$ МэВ принимают равным (400 ± 100) с, минимальное значение — 50 с, максимальное — 1500 с, среднее значение длительности всплеска СГИ — 10 с.

Č. . .

Термінны, применяємые в настоящем стандарте, и их пояснения

Таблица 2

<u> </u>	1000000
Термин	Гояснение
Солнечное тамма-излучение Дискретное излучение	По ГОСТ 25645.106 Излучение, характеризующееся резкими возрастаниями потока для определенных
Непрерывное излучение	энергий квантов Излучение, характеризующееся медлен- ными изменениями величины потока в ши-
Поток, превышающий 0,5 фо- тон/см²	роком днапазоне энергий Уровень потока СГИ, с которого в нас- тоящее время получены вадежные измере-
Вельшка СГИ	ния Возрастание потока СГИ, характеризую-
Всплеск СГИ	щееся длительностью в сотиях секунд Возрастание потока СГИ, характеризую- щееся длительностью в десятки секуна

ПРИЛОЖЕНИЕ 2 Справочное

Плотность потока СГИ по отдельным линиям

Таблица З

E, M.S.B.	Ядро	фотонісм²-с	£, M>B	Slape	фотоп/см*-с:
0,85 1,37 1,63 1,78 2,14 2,31 3,95 4,43	Fe ³⁶ Mg ²⁴ Ne ²⁰ Si ²⁰ Si ² N ¹⁴ Ci ²	2·10·-3 2·10·-4 10·-3 7·10·-4 10·-3 2·10·-3 2·10·-3	4,91 6,14 6,92 7,12 8,87 12,7 15,1	C12 C12 O18 O18 O18 O19	10-5 2-10-2 3-10-3 3-10-3 7-10-6 3-10-4 4-10-5

Характеристики потоков фонового излучения СГИ

Таблика: 4

полураспада полураспада	£, M∌B	фотон/см* с
2,58 лет	0,51 1,28	10-4 10-4
14,9 ч	1,37 2,75	10-10-10-8
10* лет	0,51 1,83	10-9-10-7
71,3 сут	0,51 0,845 1,24	10-8-10-5
5,27 .ner	1,17 1,33	10-14 10-12:
	2,58 лет 14,9 ч 10 ⁶ лет 71,3 сут	2,58 лет 0,51 1,28 14,9 ч 1,37 2,75 10 ⁶ лет 0,51 1,83 71,3 сут 0,51 0,845 1,24 5,27 лет 1,17

информационные данные

 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 19.12.89 № 3805

РАЗРАБОТЧИКИ

- С. И. Авдюшин, д-р техи. наук; О. А. Барсуков, канд. физ.-мат. наук; А. С. Бирюков; А. А. Волобуев; Е. В. Горчаков; д-р физ.-мат. наук; Б. М. Кужевский, канд. физ.-мат. наук; Е. Н. Лесновский, канд. техн. наук; Ю. И. Логачев, д-р физ.-мат. наук; А. А. Нусинов, д-р физ.-мат. наук; М. И. Панасюк, д-р физ.-мат. наук; Е. В. Пашков, канд. техн. наук; П. М. Свидский, канд. техн. наук; Л. Н. Степанова; И. Б. Теплов, д-р физ.-мат. наук; М. В. Терновская, канд. физ.-мат. наук; Е. В. Троицкая
- Срок проверки 1996 г.
- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обраначение НТД, на который дама ссылка	Номер пункта, приложения
FOCT 25645.10384	Приложение 1

Редавтор Р.: С. Федорова Техивческий редактор Л. Я. Митрофанови Корректор Л. В. Малявская

©дано: в наб. 16.01.00 Подп. в неч. 07.08.90 б.5. усл. в. л. 0,5 усл. кр. отт. 0,28 уч. над. ж. Тир. 6000 Исна 3 к.

Ордена «Знан Почета» Издательство стандартов. 123557, Москва, ГСП. Новопреснеясний пер. 3. - Жанумская типосрафия стандартов, ул. Московская, 256. Зак., 162

