

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ИЗЛУЧЕНИЕ РЕНТГЕНОВСКОЕ И ГАММА-ИЗЛУЧЕНИЕ ДИФФУЗНЫЕ ГАЛАКТИЧЕСКИЕ

ХАРАКТЕРИСТИКИ УГЛОВОГО И ЭНЕРГЕТИЧЕСКОГО РАСПРЕДЕЛЕНИЙ

FOCT 25645.131-86

Издание официальное

3

ена 5 кол.

ИСПОЛНИТЕЛИ

- С. И. Авдюшин, д-р техн. наук; В. М. Балебанов, канд. физ-мат. наук; А. В. Баюков, канд. техн. наук; А. С. Бирюков; Л. А. Вайнштейн, д-р физ-мат. наук; О. Н. Коврижных, канд. физ-мат. наук; С. Н. Кузнецов, д-р физ-мат. наук; М. И. Кудрявцев, канд. физ-мат наук; Е. Н. Лесновский, канд. техн. наук; В. М. Ломакин, канд. техн. наук; А. С. Мелиоранский, канд. физ-мат. наук; А. С. Мелиоранский, наук; А. А. Нусинов, канд. физ-мат. наук; В. М. Паиков; Т. Н. Паифилова;
- И. Я. Ремизов, канд. техн. наук;
 И. А. Савенко , д-р физ.-мат. наук;
 В. И. Степакии, канд. техн. наук;
 П. М. Свидский, канд. физ-мат. наук;
- И. Б. Теппов, д-р физ.-мат. наук; И. П. Тиндо, канд. физ.-мат. ноук

СОГЛАСОВАНО с Государственной службой стандартных справочных данных [протокол от 11 ноября 1985 г. № 22]

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 17 января 1986 г. № 137

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ИЗЛУЧЕНИЕ РЕНТГЕНОВСКОЕ И ГАММА-ИЗЛУЧЕНИЕ ДИФФУЗНЫЕ ГАЛАКТИЧЕСКИЕ

Характеристики углового и энергетического распределений

ГОСТ 25645.131—86

Galactic diffuse gamma- and X- rays. Characteristics of angular and energy distributions

OKCTY 0080

Постановлением Государственного комитета СССР по стандартам от 17 января 1986 г. № 137 срок введения установлен

c 01.01.87

 Настоящий стандарт устанавливает исходные параметры и зависимости, характеризующие угловое и энергетическое распределения потока фотонов с энергиями от 20 кэВ до 200 МэВ диффузных галактических рентгеновского и гамма-излучений.

Стандарт предназначен для использования в расчетах потока фотонов, падающего на открытые (незатененные) поверхности элементов технических устройств в космическом пространстве.

- 2. Диффузные галактические рентгеновское и гамма-излучения представляют в виде суммы спектрально-непрерывного излучения линейного источника, находящегося на небесной сфере на широтах b от минус 10 до плюс 10°, долготах i от 310 до 50° и спектрально-непрерывного излучения протяженного источника со светимостью, зависящей от широты b.
- 3. Энергетическое распределение линейного источника характеризуют спектральной плотностью потока фотонов, отнесенной к единице линейного угла, I_1 , с⁻¹ · см⁻² · кэ \mathbf{B}^{-1} · рад⁻¹, определяемой по формуле

$$I_1 = A_1 \cdot E^{-1}$$
, (1)

где E — энергия фотона, кэB;

 A_1 , γ_1 — параметры, значения которых приведены в таблице.

Издание официальное

Перепечатка воспрещена

大

С Издательство стандартов, 1986

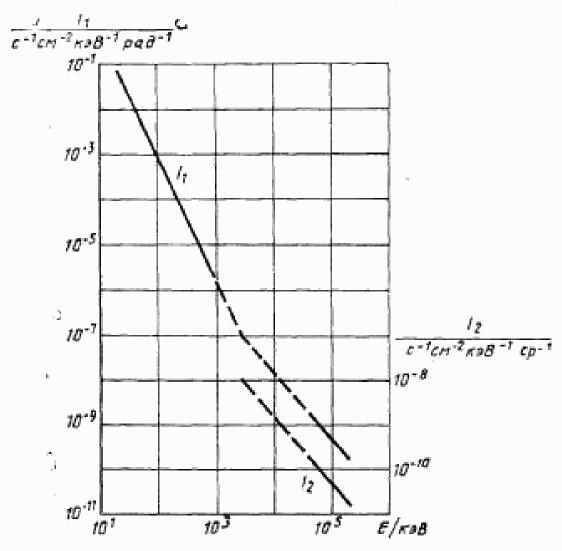
2 - 1881

Параметры энергетическ	ого спектра	линейного	источника	диффузных
галактических	ренттеновско	ого и гама	ға-жалучени	ıA .

Диалазон экергик Е, кэВ	A,	7.
От 20.0 до 2.5·10 ³	337.0	2.8
от 2.5·10 ³ до 2,0·10 ⁵	1,3·10 ⁻²	1.5

4. Энергетическое и угловое распределения протяженного источника характеризуют спектральной плотностью потока фотонов, отнесенной к единице телесного угла, I_2 , $c^{-1} \cdot cm^{-2} \cdot ksB^{-1} \cdot cp^{-1}$ определяемой по формуле

$$I_2 = A_2 \cdot E^{-\tau_a} \cdot [1 - \exp(-|b|/\alpha)]/\sin|b|,$$
 (2)


где b — галактическая широта, градус;

$$A_2=1,42\cdot 10^{-3};$$

 $\alpha=8,6;$
 $\gamma_2=1,5.$

- 5. Значения спектральной плотности I, равной сумме I₁ и I₂, потока фотонов диффузного галактического излучения, падающего на площадку произвольной ориентации, для различных энергий фотонов приведены в справочном приложении 1. Программа расчета этих значений приведена в справочном приложении 2.
- Данные для приближенной оценки потоков фотонов диффузных галактических рентгеновского и гамма-излучений приведены на чертеже.

Примечание. В диапазоне энергий от 10° до $3.5 \cdot 10^{\circ}$ изВ экспериментальные данные отсутствуют. В этом диапазоне расчет по формулам (1) и (2) позволяет получить экстраполированные значения I_1 , I_2 , обозначению на чертеже пунктырной линией,

 Параметры и зависимости, приведенные в настоящем стандарте, обеспечивают расчет потока фотонов диффузных галактических рентгеновского и гамма-излучений с погрешностью не более 30%. Спектральная плотность потока фотонов диффузиых рентгеновского и гамма-излучений в зависимости от энергии E

 $I_1 = \text{для линейного источника;}$ $I_2 = \text{для протяженного источника в направлении на галактический полию 1 b <math display="inline">t=90^\circ$

ПРИЛОЖЕНИЕ 1 Справочное

Таблица 1 Спектральная плотность потока фотонов / диффузного галактического излучения, падающего на площадку в 1 см² для экергии 20 кэВ

излучения, падающего на площадку в 1 см. для энергии 20 кэр					
Галакты-	/, c-1 · cm ·	-⊪-кэВ≒- ср=1. пр	н талактическої	инроте в, гра	лус.
деская дежгога	0	50	20	30	40
0° 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 220 230 240 250 260 270 280 290 300 310 320 330 340 350	0.116E 00 0.109E 00 0.101E 00 0.892E—01 0.760E—01 0.500E—01 0.380E—01 0.271E—01 0.178E—01 0.102E—01 0.458E—02 0.115E—02 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.395E—09 0.115E—02 0.458E—02 0.102E—01 0.178E—01 0.272E—01 0.178E—01 0.272E—01 0.380E—01 0.500E—01 0.500E—01 0.628E—01 0.760E—01 0.760E—01 0.892E—01 0.101E 00 0.109E 00 0.115E 00	0,115E 00 0,108E 00 0,108E 00 0,993E—01 0,879E—01 0,619E—01 0,493E—01 0,268E—01 0,175E—01 0,100E—01 0,453E—02 0,115E—02 0,853E—05 0,000 0,	0,109E 00 0,108E 00 0,108E 00 0,948E—01 0,839E—01 0,715E—01 0,470E—01 0,358E—01 0,256E—01 0,168E—01 0,962E—02 0,436E—02 0,114E—02 0,267E—04 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,14E—02 0,436E—04 0,114E—02 0,436E—01 0,596E—01 0,256E—01 0,596E—01 0,591E—01 0,591E—01 0,715E—01 0,839E—01 0,948E—01 0,103E 00 0,108E 00	0,101E 00 0,993E—01 0,948E—01 0,873E—01 0,659E—01 0,545E—01 0,434E—01 0,236E—01 0,155E—01 0,893E—02 0,409E—02 0,112E—02 0,587E—04 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,588E—04 0,112E—02 0,409E—02 0,409E—02 0,409E—01 0,330E—01 0,330E—01 0,434E—01 0,545E—01 0,659E—01 0,873E—01 0,948E—01 0,993E—01	0,892E—01 0,879E—01 0,838E—01 0,773E—01 0,684E—01 0,584E—01 0,293E—01 0,293E—01 0,210E—01 0,138E—01 0,801E—02 0,373E—02 0,110E—02 0,107E—03 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,108E—03 0,110E—02 0,373E—02 0,373E—01 0,216E—01 0,293E—01 0,293E—01 0,293E—01 0,293E—01 0,293E—01 0,293E—01 0,293E—01 0,293E—01 0,293E—01 0,293E—01 0,293E—01 0,293E—01 0,293E—01

Продолжение табл. 1

				и россилие	NEC TROAL A
Галекти-	 I, с-1 - см-1 - кэВ-1 - ср-1, при галантической широте b, градус. 				
ческая долгота [50	60	70	80	90
0° 10 20 30 40 50 60 70 80 100 110 120 130 140 150 160 170 180 190 210 220 230 240 250 260 270 280 290 310 320 330 340 350	0,749E—01 0,737E—01 0,703E—01 0,648E—01 0,575E—01 0,492E—01 0,407E—01 0,325E—01 0,178E—01 0,178E—01 0,18E—02 0,118E—02 0,116E—02 0,18E—03 0,158E—05 0,000 0,000 0,000 0,000 0,000 0,159E—05 0,18E—03 0,110E—02 0,331E—02 0,18E—01 0,000 0,000 0,000 0,000 0,000 0,159E—05 0,18E—01 0,178E—01 0,178E—01 0,178E—01 0,492E—01 0,492E—01 0,492E—01 0,575E—01 0,648E—01 0,737E—01 0,737E—01	0,582E-01 0,573E-01 0,547E-01 0,504E-01 0,449E-01 0,386E-01 0,256E-01 0,196E-01 0,142E-01 0,948E-02 0,568E-02 0,288E-02 0,288E-02 0,114E-02 0,296E-03 0,254E-04 0,000 0,000 0,000 0,000 0,000 0,000 0,254E-04 0,296E-03 0,114E-02 0,288E-02 0,288E-02 0,288E-01 0,256E-01 0,196E-01 0,196E-01 0,196E-01 0,196E-01 0,320E-01 0,320E-01 0,386E-01 0,449E-01 0,547E-01 0,573E-01	0,398E-01 0,392E-01 0,374E-01 0,346E-01 0,310E-01 0,269E-01 0,140E-01 0,140E-01 0,140E-01 0,11E-02 0,451E-02 0,258E-02 0,512E-03 0,139E-03 0,139E-03 0,152E-04 0,000 0,000 0,000 0,000 0,152E-04 0,139E-03 0,152E-04 0,139E-03 0,152E-04 0,139E-03 0,152E-04 0,139E-03 0,152E-04 0,139E-01 0,140E-01 0,140E-01 0,140E-01 0,140E-01 0,140E-01 0,140E-01 0,140E-01 0,140E-01 0,140E-01 0,346E-01 0,346E-01	0,204E-01 0,201E-01 0,194E-01 0,182E-01 0,167E-01 0,148E-01 0,148E-01 0,108E-01 0,885E-02 0,699E-02 0,534E-02 0,392E-02 0,185E-02 0,117E-02 0,696E-03 0,163E-03 0,163E-03 0,163E-03 0,163E-03 0,163E-03 0,17E-02 0,17E-02 0,185E-02 0,17E-02 0,185E-03 0,168E-03 0,17E-02 0,185E-03 0,17E-02 0,185E-01 0,19E-01 0,19E-01 0,19E-01 0,19E-01 0,19E-01 0,19E-01 0,19E-01 0,19E-01	0,581E-02 0,581E-02
		_	`- \	=	

Примечания:

^{1.} Значение параметров / с литерой Е следует понимать как произведение коэффициента, стоящего до E, на десять в степени, равной числу, стоящему после E, со своим внаком.

^{2.} І н b — координаты вормали к единичной площадке.
3. Для получения спектральной плотности потока фотонов диффузиого галактического излучения с энергией свыше 20 до 2,5° 10° кэВ необходимо число, приведенное в таблице, умножить на значение

Таблица 2 Спектральная плотность потока фотонов / диффузного галактического излучения, падающего на площадку в 1 см² для энергин 3,5 · 104 къВ

измучения, падающего на площадку в 1 см² для энергин 3,5 10° кэв					
Галакты-	I. с-1 · см=1 · КЭВ-1 · ср−1, при галактической широте b, градус.				радус.
ADDITOTE	0	10	20	30	40
0° 10 20 30 40 50 60 70 80 90 100 120 130 140 150 160 170 180 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350	0,512E—08 0,507E—08 0,493E—08 0,470E—08 0,438E—08 0,402E—08 0,366E—08 0,269E—08 0,269E—08 0,196E—08	0,506E—08 0,501E—08 0,487E—08 0,464E—08 0,433E—08 0,362E—08 0,362E—08 0,295E—08 0,266E—08 0,241E—08 0,241E—08 0,296E—08 0,194E—08 0,266E—08 0,295E—08 0,362E—08 0,362E—08 0,362E—08 0,362E—08 0,464E—08 0,464E—08 0,464E—08 0,464E—08	0,486E—08 0,469E—08 0,469E—08 0,447E—08 0,417E—08 0,350E—08 0,350E—08 0,258E—08 0,258E—08 0,215E—08 0,215E—08 0,192E—08 0,189E—08	0,455E-08 0,439E-08 0,439E-08 0,419E-08 0,392E-08 0,361E-08 0,330E-08 0,299E-08 0,271E-08 0,245E-08 0,26E-08 0,185E-08 0,182E-08	0,414E—08 0,410E—08 0,399E—08 0,381E—08 0,357E—08 0,303E—08 0,276E—08 0,251E—08 0,299E—08 0,174E—08 0,174E—08 0,171E—08

Продолжение табл. 2

Cambridge Color Color					11 honocourries	der Taox. 2
0° 0.363E-08 0.305E-08 0.243E-08 0.180E-08 0.136E-08 10 0.360E-08 0.302E-08 0.241E-08 0.179E-08 0.136E-08 20 0.350E-08 0.295E-08 0.236E-08 0.177E-08 0.136E-08 30 0.355E-08 0.295E-08 0.229E-08 0.177E-08 0.136E-08 40 0.316E-08 0.269E-08 0.219E-08 0.170E-08 0.136E-08 50 0.233E-08 0.251E-08 0.207E-08 0.155E-08 0.136E-08 60 0.270E-08 0.234E-08 0.196E-08 0.165E-08 0.136E-08 70 0.248E-08 0.20E-08 0.154E-08 0.156E-08 0.136E-08 80 0.27E-08 0.20E-08 0.154E-08 0.14E-08 0.136E-08 100 0.191E-08 0.172E-08 0.154E-08 0.135E-08 0.136E-08 110 0.178E-08 0.155E-08 0.147E-08 0.132E-08 0.136E-08 120 0.148E-08 0.155E-08 0.142E-08 0.136E-08		I. с-1 · см-2 · кэВ-1 · ср-1, при галактической широте b. срад				
10. 0.360E 08		60	60	70	80	90
	10 20 30 40 50 60 70 80 90 110 120 130 140 150 160 170 180 220 230 240 250 260 270 280 290 290 310 320 330 340 340	0.360E-08 0.350E-08 0.350E-08 0.335E-08 0.316E-08 0.293E-08 0.248E-08 0.227E-08 0.191E-08 0.168E-08 0.162E-08 0.159E-08	0,302E—08 0,295E—08 0,269E—08 0,251E—08 0,234E—08 0,216E—08 0,200E—08 0,185E—08 0,162E—08 0,155E—08 0,147E—08	0,241E-08 0,236E-08 0,229E-08 0,219E-08 0,207E-08 0,196E-08 0,184E-08 0,13E-08 0,147E-08 0,142E-08 0,135E-08 0,135E-08 0,135E-08 0,135E-08 0,135E-08 0,135E-08 0,135E-08 0,136E-08 0,135E-08	0,179E-08 0,177E-08 0,177E-08 0,170E-08 0,165E-08 0,160E-08 0,154E-08 0,149E-08 0,135E-08 0,135E-08 0,135E-08 0,125E-08 0,126E-08 0,126E-08 0,130E-08	0,136E-08

Примечания:

2. I н b — координаты вормали к единичной площадке.

^{1.} Значение параметра I с литерой E следует повимать как произведение коэффициента, стоящего до E, на десять в степени, равной числу, стоящему после E, со своим знаком.

Для диффузного галактического излучения с энергией свыше 3,5 10⁴ до 2 10⁸ квВ необходимо число, приведенное в таблице, умножить на значение / 3,5 10⁴ \^{1,5}

ПРИЛОЖЕНИЕ 2 Справочное

Программа расчета спектральной плотности потока фотонов диффузного галактического излучения

```
SB(181), CB(181), SL(360),
    DIMENSION IN(10), SBO(10), CBO(10).
                                      All(10, 36), Al2(10, 36),
                             Z(181),
                                                                  D(22, 101).
                  CL(360).
                  SBi(181), CB1(181), SL1(360), CL1(360)
2
    ДАТА NB, NL/15, 60/
PI = ATAN(1.)* 4.
    AK = P1/18.
    SHB = 2.* AK/NB
    SHL=10.* AK/NL
    NBB = NB + 1
    NLL = NL + I
    D(1, 1) = 0.25
    D(1, NLL) = 0.25
    D(NBB, 1) = 0.25
    D(NBB, NLL) = 0.25
    DO 10 1-2, NL
    D(1, 1) = 0.5
    D(NBB, I) = 0.5
    CONTINUE
10
    DO 20 I=2, NB
    D(I, I) = 0.5
    D(I, NLL) = 0.5
20^{\circ}
    CONTINUE
    DO 40 I=2. NB
    DO 30 J-2, NL
    D(1, J) = 1
     CONTINUE
30
40.
     CONTINUE
    DEL = SHB* SHL
     DO 50 l = 1.10
     IN(I) = (1-1) * 10
     CONTINUE
50.
     DO 180 1-1,36
     ALO = (1-1) * AK
     SLO = SIN(ALO)
     CLO=COS(ALO)
     DO 170 J=1, 10
     IF(LGT.1) GOTO 60
     BO = (i-1)*AK
     SBO(J) = SIN(BO)
     CBO(J) = COS(BO)
60
     CONTINUE
     B---- [,* AK
     S=0.
     DO 110 K=1, NBB
     IF (J.GT:1) GOTO 70
     SB(K) = SIN(B)
     CB(K) \Rightarrow COS(B)
     CONTINUE
70
     AL=31.*AK
```

```
SV = 0.
     DO 100 L=1, NLL
     IF (K,GT.1) GOTO 80
     SL(L) = SIN(AL)
     CL(L) = COS(AL)
     CONTINUE
80
     F = SB(K)*SBO(J) + CB(K)*CBO(J)*(SL(L)*SLO+CL(L)*CLO)
     IF(F,LE,0,) GOTO 90.
     SV = SV + F*CB(K)*D(K.L)
90
     AL = AL + SHL
100
     CONTINUE
     S = S + SV
     B-B+SHB
     CONTINUE
110
     AII(J, I) = 0.22*S*DEL
     B = --9.* AK
     T=0.
     DO 160 K=1, 136
     IF(J.GT.1) GOTO 120
     SB(K) = SIN(B)
     CB1(K) - COS(B)
     Z(K) = 2.24E - 10^{\circ}(1 - EXP(-ABS(B)/0.15))/SIN(ABS(B))
      CONTINUE
120
      AL=0.
      TV = 0.
     D0 150 L=1, 217
     IF(K.GT.1) GOTO 130
     SL1(L) = SIN(AL)
      CL1(L) = COS(AL)
130
      CONTINUE
      F = SB1(K)*SBO(J) + CB1(K)*CBO(J)*(SL1(L)*SLO+CL1(L)*CLO)
      IF(F.GE.0.) TV = TV + F*Z(K)*CB1(K)
140
      AL = AL + SHL
      CONTINUE
150
      T = T + TV
      B = B + SHB
160
      CONTINUE
      A12(J, 1) = (5, 92 E - 9*S + I)*DEL
      CONTINUE
170
180
      CONTINUE
      PRINT 190
      FORMAT(// 40X, 'ПЕРВЫЙ ВАРИАНТ', //)
190
      PRINT 200, (IN(I), I=1, 10)
200
      FORMAT (12X, 10(12, 8X) //)
      DO 210 1-1,36
      J = (I - 1) * 10
      PRINT 240, J, (Al1(K, 1), K=1, 10)
      CONTINUE
210
      PRINT 220
      FORMAT (//, 40X, ' BTOPOM BAPHAHT', //)
220
      PRINT 200, (IN(I), I=1,10)
      DO 230 I=1, 36
      J = (I-1) * 10
      PRINT 240, J. (AI2(K, I), K=1, 10)
```

Стр. 10 ГОСТ 25645.131—86

230 CONTINUE 240 FORMAT (3X, 13, 10E10.3,/), END

> Редактор А. И. Ломина Технический редактор М. И. Максимова Корректор В. Ф. Малютина

Скажо в наб. 10.02.86 Поди. в печ. 24.03.86 0.75 усл. п. л. 0.75 усл. ар. отт. 0.70 уч. въд. л. Тар. 6000

Ордена «Знак Почета» Издательство стандартов. 123840, Москва, ГСП, Новопресненский вер., 3 Тип. «Московский вечатияк». Москва, Лилии вер., 6. Зак. 1881

