

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СТАЛИ ЛЕГИРОВАННЫЕ И ВЫСОКОЛЕГИРОВАННЫЕ

МЕТОДЫ ОПРЕДЕЛЕНИЯ ТАНТАЛА ГОСТ 17051—82

Издание официальное

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СТАЛИ ЛЕГИРОВАННЫЕ И ВЫСОКОЛЕГИРОВАННЫЕ

Методы определения тантала

FOCT 17051-82

Alloyed and high-alloyed steels. Methods for determination of tantalum

OKCTY 0809

Дата введения <u>01.01.83</u>

Настоящий стандарт устанавливает экстракционно-фотометрический метод определения тантала (при массовых долях тантала от 0,002 до 1,00%) и фотометрический метод (при массовых долях тантала от 0,10 до 1,00%).

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методам анализа — по ГОСТ 28473.
 (Измененная редакция, Изм. № 1, 2).

2. ЭКСТРАКЦИОННО-ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ТАНТАЛА

2.1. Сущность метода

Метод основан на экстракции окрашенного в зеленый цвет соединения фторидного комплекса тантала (V) с малахитовым зеленым при помощи смеси из гексана и 1,2-дихлорэтана и последующем измерении оптической плотности экстракта при длине волны 635 нм.

2.2. Аппаратура, реактивы и растворы Спектрофотометр или фотоэлектроколориметр.

Издание официальное

Перепечатка воспрещена

Издательство стандартов, 1982
 ИПК Издательство стандартов, 1997
 Переиздание с Изменениями

Весы лабораторные общего назначения по ГОСТ 24104 второго класса точности с наибольшим пределом взвешивания до 200 г или любые другие весы с аналогичными метрологическими характеристиками.

Кислота фтористоводородная по ГОСТ 10484.

Кислота серная по ГОСТ 4204 и разбавленная 1:1.

Водорода пероксид по ГОСТ 10929, 30 %-ный раствор.

Аммоний щавелевокислый по ГОСТ 5712, раствор 40 г/дм3.

Аммоний фтористый по ГОСТ 4518, раствор 100 г/дм³, свежеприготовленный. Раствор хранят в полиэтиленовом сосуде.

Малахитовый зеленый (тетрамстил-ди-*п*-диаминофуксонийхлорид), раствор 0,0015 г/см³, свежеприготовленный.

n-Гексан.

Дихлорэтан технический по ГОСТ 1942, высший сорт.

Экстракционная смесь: 2 объемные части *n*-тексана смешивают с 1.5 объемными частями дихлорэтана технического.

Образен стали, химический состав которого аналогичен химическому составу анализируемой пробы, с массовой долей менее 0.0002 % тантала.

Раствор фона: навеску стали массой 3,125 г помещают в платиновую чашку, допускается проводить растворение в чашке из стеклоуглерода или во фторопластовом стакане, и растворяют при нагревании в 25 см³ раствора фтористоводородной кислоты, добавляя 10 см³ раствора пероксида водорода порциями примерно по 0,5 см³. Раствор выпаривают до начала выделения солей, после охлаждения осторожно добавляют 25 см³ серной кислоты и повторяют выпаривание до появления паров серной кислоты. После охлаждения соли смывают в стакан 25 см³ раствора щавелевокислого аммония, добавляя его небольшими порциями (при использовании фторопластового стакана операция опускается). Раствор нагревают до растворения солей, охлаждают, переводят в мерную колбу вместимостью 250 см³, доливают до метки раствором щавелевокислого аммония и перемешивают.

Допускается применение раствора фона, приготовленного из металлического железа и стандартных растворов или навески элементов, массовая доля которых в анализируемой пробе свыше 0,5 %.

Тантал металлический или пятиоксид тантала.

Стандартные растворы тантала.

Раствор А: 0,1000 г металлического тантала или 0,1221 г пятиоксида тантала растворяют в платиновой чашке в 20 см³ раствора

фтористоводородной кислоты при нагревании, добавляя около 10 см³ раствора пероксида водорода порциями по 0,5 см³. К раствору добавляют 10 см³ раствора серной кислоты и нагревают до появления паров серной кислоты. После охлаждения соли растворяют в 40 см³ раствора щавелевокислого аммония и нагревают. Раствор переводят в мерную колбу вместимостью 1 дм³, добавляют 40 см³ раствора серной кислоты, доливают раствором щавелевокислого аммония до метки и перемешивают; годен к употреблению не более одной недели.

1 см³ раствора А содержит 0,1 мг тантала.

Раствор Б: 10 см³ раствора А переносят в мерную колбу вместимостью 100 см³, доливают до метки раствором щавелевокислого аммония и перемешивают; готовят перед употреблением.

1 см3 раствора Б содержит 0,01 мг тантала.

(Измененная редакция, Изм. № 1, 2).

- 2.3. Проведение анализа
- 2.3.1. Массу навески стали в зависимости от содержания тантала в стали определяют по табл. 1. Навеску стали помещают в платиновую чашку, допускается проводить растворение в чашке из стеклоут-лерода или во фторопластовом стакане, и растворяют в 10 см³ раствора фтористоводородной кислоты при нагревании, добавляя 5—7 см³ раствора пероксид водорода порциями по 0,5 см³.

Таблица 1

Массовая доля тантала, %	Масса навески, г	Вместимость колбы, см ³	Объем раствора серной кислоты, сы ³	Масса навески, соответствую- щая аликвотной части раствора, г
От 0,002 до 0,01 Св. 0,01 » 0,05 » 0,05 » 0,10 » 0,10 » 0,50 » 0,50 » 1,00	0,500 0,200 0,100 0,050 0,050	50 100 100 250 500	10 10 40 90	0,050 0,010 0,005 0,001 0,0005

К раствору добавляют 10 см³ раствора серной кислоты и нагревают до появления паров серной кислоты. После охлаждения добавляют около 25—30 см³ раствора щавелевокислого аммония и растворяют

соли при умеренном нагревании. Охлаждают, переводят раствор в мерную колбу, обмывая стенки чашки или фторопластового стакана раствором щавелевокислого аммония. Вместимость колбы и объем раствора вводимой в колбу серной кислоты определяют по табл. 1. Доливают до метки раствором щавелевокислого аммония и перемешивают.

Из раствора отбирают аликвотную часть объемом 5 см³ и помещают в полиэтиленовую делительную воронку или полиэтиленовый сосуд. К раствору при помощи бюретки добавляют 1 см³ раствора серной кислоты, 5 см³ раствора фтористого аммония, перемешивают и выдерживают 3 мин, затем добавляют 2 см³ раствора малахитового зеленого и перемешивают. Непосредственно после этого раствор встряхивают с 5 см³ экстракционной смеси в течение 1—1,5 мин.

После разделения фаз экстракт отбирают полиэтиленовой пипеткой или сливают из делительной воронки в стеклянный стакан вместимостью 50 см³ и из него в кювету с толщиной поглощающего слоя 10 мм. Кювету закрывают крышкой и сразу же измеряют оптическую плотность экстракта при длине волны 635 нм. В качестве раствора сравнения применяют экстракт нулевого раствора (см. табл. 3).

(Измененняя редакция, Изм. № 1, 2).

2.3.2. Для построения градуировочного графика в шесть колб вместимостью по 50 см³ приливают в зависимости от массовой доли тантала объемы раствора фона и раствора серной кислоты согласно табл. 2.

Таблица 2

Массовая доля тантала, %	Объем раствора фона, см ³	Объєм раствора серной кислоты, см ³
От 0,002 до 0,01	40,0	2,0
Св. 0,01 » 0,05	8,0	8,4
» 0,05 » 0,10	4,0	9,2
» 0,10 » 0,50	0,8	9,8
» 0,50 » 1,00	0,4	10,0

Добавляют в колбы объемы стандартного раствора тантала Б в соответствии с табл. 3.

Объем стандартного раствора тантала Б, см ³	Масса тантала в отобранном объеме стандартного раствора тантала Б, мг	Масса тантала, соответствующая аликвотной части раствора, мг	
0	0	.0	
1,0	0,01	.0,001	
2,0	0,02	0,002	
3,0	0,03	0,003	
4,0	0,04	0,004	
5,0	0,05	0,005	

Все мерные колбы доливают раствором щавелевокислого аммония до метки и содержимое перемешивают.

Из растворов отбирают аликвотную часть объемом 5 см³ и помешают в полиэтиленовую делительную воронку или полиэтиленовый сосуд. Далее поступают по п. 2.3.1.

Оптическую плотность экстрактов измеряют по отношению к экстракту нулевого раствора. По полученным значениям оптической плотности экстрактов и соответствующим им массам тантала строят градуировочный график.

(Измененная редакция, Изм. № 2).

- 2.4. Обработка результатов
- 2.4.1. Массовую долю тантала (X) в процентах вычисляют по формуле

$$X = \frac{m}{m_1} \cdot 100,$$

- где m масса тантала в аликвотной части анализируемого раствора, найденная по градуировочному графику, г;
 - m_1 масса навески, соответствующая аликвотной части раствора, г.
- 2.4.2. Нормы точности и нормативы контроля точности определения массовой доли тантала приведены в табл. 4.

Таблица 4

		Доп	ускаемые р	асхождения	, %
Массовая доля тантала, %	Погреш- ность резуль- татов анализа, %	двух средних резуль- татов анализа, выпол- ненных в различных условиях	двух парал- лельных опреде- лений	трех парал- лельных определе- ний	результа- тов анализа стандарт- ного образца от аттесто- ванного значения
От 0,002 до 0,005 включ. Св. 0,005 » 0,01 » » 0,01 » 0,02 » » 0,02 » 0,05 » » 0,05 » 0,10 »	0,0012 0,0024 0,004 0,008 0,012	0,0030 0,005 0,010	0,0012 0,025 0,004 0,008 0,012	0,0015 0,0030 0,005 0,010 0,015	0,0008 0,0016 0,003 0,005 0,008
» 0,10 » 0,2 » » 0,2 » 0,5 » » 0,5 » 1,0 »	0,024 0,04 0.06	1 7	0,025 0,04 0,06	0,030 0,05 0,07	0,016 0,03 0,04

(Измененная редакция, Изм. № 2).

3. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ТАНТАЛА

3.1. Сущность метода

Метод основан на отделении тантала из хлорнокислого раствора при помощи сернистой кислоты, переосаждении фениларсоновой кислотой, образовании окрашенного в желтый цвет соединения тантала с пирогаллолом в растворе ортофосфорной кислоты и измерении оптической плотности при длине волны 430 нм.

В случае присутствия вольфрама производится дальнейшее отделение тантала осаждением сульфатом магния в аммиачном растворе.

3.2. Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр.

Кислота соляная по ГОСТ 3118 и разбавленная 1:5 и 1:10.

Кислота серная по ГОСТ 4204 и разбавленная 1:1.

Кислота азотная по ГОСТ 4461.

Кислота ортофосфорная по ГОСТ 6552, разбавленная 1:3.

Кислота хлорная, 57-60 %-ный раствор.

C. 7 FOCT 17051-82

Кислота сернистая, 6 %-ный раствор.

Кислота фтористоводородная по ГОСТ 10484.

Аммиак водный по ГОСТ 3760.

Калий пиросернокислый по ГОСТ 7172.

Калий утлекислый технический по ГОСТ 10690.

Натрий углекиелый по ГОСТ 83.

Смесь безводного углекислого калия и безводного углекислого натрия в соотношении 3:1 и 1 %-ный раствор.

Магний сернокислый 7-водный по ГОСТ 4523.

Аммоний хлористый по ГОСТ 3773 и раствор 250 г/дм³.

Кислота фениларсоновая, раствор 25 г/дм3.

Промывной раствор 1: 100 см³ раствора фениларсоновой кислоты разбавляют 100 см³ воды.

Аммоний щавелевокислый по ГОСТ 5712, раствор 40 г/дм3.

Пирогаллол, раствор 0,4 г/см³, свежеприготовленный.

Осаждающий раствор 1: 40 г хлористого аммония растворяют в 400 см³ воды. К раствору добавляют 40 см³ аммиака, переливают в мерную колбу вместимостью 500 см³, доливают до метки водой и перемешивают.

Осаждающий раствор 2: 40 г сернокиелого магния растворяют в 400 см³ воды. Раствор переносят в мерную колбу вместимостью 500 см³, доливают до метки водой и перемешивают.

Промывной раствор 2: в 200 см³ осаждающего раствора 1 растворяют 2 г углекислого калия. К раствору добавляют 200 см³ осаждающего раствора 2, переносят в мерную колбу вместимостью 500 см³, доливают до метки водой и перемешивают.

Раствор пиросернокислого калия и шавелевокислого аммония: 14 г пиросернокислого калия помещают в платиновую чашку и нагревают в муфельной печи до начала плавления. После охлаждения к плаву добавляют 5 капель серной кислоты. Плав снова нагревают до полного расплавления. После охлаждения плав растворяют в стакане вместимостью 250 см³ в 100 см³ раствора шавелевокислого аммония при умеренном нагревании и постоянном перемешивании. Раствор переносят в мерную колбу вместимостью 500 см³, доливают до метки раствором щавелевокислого аммония и перемешивают.

Тантала пятиоксид.

Стандартный раствор тантала: 0,1526 г пятиоксида тантала помещают в платиновую чашку и нагревают в муфельной печи до начала плавления с 14 г пиросернокислого калия. Далее поступают по п. 2.2; годен к употреблению не более одной недели.

1 см³ раствора содержит 0,25 мг тантала. (Измененная редакция, Изм. № 1).

3.3. Проведение анализа

3.3.1. Массу навески пробы в зависимости от массовой доли тантала в стали определяют по табл. 5. Навеску пробы помещают в стакан вместимостью 800 см³, приливают 50 см³ соляной кислоты и 15 см³ азотной кислоты и растворяют при нагревании. К раствору добавляют раствор хлорной кислоты согласно табл. 5, выпаривают до появления густых паров хлорной кислоты и в закрытом стакане продолжают нагревание в течение 10 мин.

Таблина 5

Массовая доля тантала, %	Масса навески пробы, г	Объем раствора хлорной кислоты, см ³	Масса навески пробы, соответствующая аликвотной части раствора, г
От 0,1 до 0,5	5	60	0,2
Св. 0,5 » 1,0	2,5	40	0,1

После охлаждения соли растворяют в 200 см³ воды. К раствору добавляют 50 см³ раствора сернистой кислоты, нагревают, кипятят 10 мин и выдерживают в течение 30 мин при температуре от 70 до 80 °C. Раствор отфильтровывают через два фильтра средней плотности с фильтробумажной массой. Фильтр с осадком сначала промывают шесть раз раствором соляной кислоты (1:10) и потом три раза горячей водой. Фильтр с осадком переносят в платиновую чашку, озоляют фильтр и осадок прокаливают при температуре 1000 °C. Осадок смачивают 0,5 см³ раствора серной кислоты, добавляют 5 см³ раствора фтористоводородной кислоты, выпаривают досуха и сплавляют с 5 г смеси углекислого калия-натрия.

После охлаждения плав растворяют в стакане вместимостью 400 см³ в воде, объем которой выбран так, чтобы предназначенный для осаждения объем раствора составлял 150—200 см³. Раствор фильтруют через фильтр средней плотности.

Фильтр с осадком пять раз промывают раствором смеси углекислого калия-натрия и отбрасывают. К фильтрату (фильтрат A) добавляют раствор соляной кислоты (1:5) до кислой реакции и после нагрева до температуры около 80 °C добавляют 30 см³ раствора фениларсоновой кислоты. После 10 мин раствор фильтруют через фильтр средней плотности. Фильтр с осадком пять раз промывают, употребляя каждый раз по 10 см³ промывного раствора 1 и помещают в кварцевый тигель. Фильтр осторожно озоляют и остаток прокаливают при 1000 °C. Остаток с 7 г пиросернокислого калия нагревают до начала плавления. После охлаждения к плаву добавляют пять капель серной кислоты. Плав снова нагревают до полного расплавления. После охлаждения плав растворяют в стакане вместимостью 250 см³ в 50 см³ раствора щавелевокислого аммония при умеренном нагревании и постоянном перемешивании. Раствор переводят в мерную колбу вместимостью 250 см³, добавляют 25 см³ раствора ортофосфорной кислоты, доливают раствором щавелевокислого аммония до метки и перемешивают. Часть раствора отфильтровывают.

10 см³ фильтрата переливают в стакан и добавляют 3 см³ раствора пирогаллола. Не более чем через 5 мин измеряют оптическую плотность при длине волны 430 им.

Раствором сравнения служит раствор контрольного опыта.

(Измененная редакция, Изм. № 2).

- 3.3.2. В случае присутствия вольфрама фильтрат А нагревают до температуры около 50 °C и при перемешивании добавляют 25 см³ осаждающего раствора 1 и после этого 25 см³ осаждающего раствора 2. Раствор в течение 60 мин выдерживают при 50 °C и после этого фильтруют через фильтр средней плотности. Фильтр с осадком три раза промывают промывным раствором 2, после этого помещают в стакан вместимостью 400 см³, содержащий 30 см³ раствора хлористого аммония. Стеклянной палочкой разрушают фильтр с осадком. К раствору сначала добавляют раствор соляной кислоты (1:5) до кислой реакции и после нагревания до температуры около 80 °C добавляют 30 см³ раствора фениларсоновой кислоты. Далее поступают по п.3.3.1.
- 3.3.3. Для построения градуировочного графика в шесть мерных колб вместимостью 100 см³ наливают согласно табл. 6 стандартный раствор тантала и добавляют до 50 см³ раствором пиросернокислого калия и шавелевокислого аммония.

Таблица 6

	* # O A R LL G	
Объем стандартного раствора тантала, см ³	Масса тантала, соответствующая отобранной части стандартного раствора тантала, мг	Масса тантала, содержащегося в аликвотной части раствора, мг
0	0	0
8,0	2,0	0,2
16,0	4,0	0,4
24,0	6,0	0,6
32,0	8,0	0,8
40,0	10,0	1,0

К растворам добавляют по 10 см³ раствора ортофосфорной кислоты, доливают до метки раствором щавелевокислого аммония и перемешивают.

От каждого раствора отбирают в отдельные сухие стаканы объем по 10 см³ и добавляют по 3 см³ раствора пирогаллола. Не более чем через 5 мин измеряют оптическую плотность при длине волны 430 нм. Раствором сравнения служит нулевой раствор.

По полученным значениям оптических плотностей и соответствующим им массам тантала строят градуировочный график.

(Измененная редакция, Изм. № 2).

3.4. Обработка результатов

3.4.1. Массовую долю тантала (X) в процентах вычисляют по формуле

$$X = \frac{m}{m_1} \cdot 100,$$

где m — масса тантала в аликвотной части анализируемого раствора, найденная по градуировочному графику, г;

т — масса навески, соответствующая аликвотной части анализируемого раствора, г.

 3.4.2. Нормативы точности и нормативы контроля точности определения массовой доли тантала приведены в табл. 4.

(Измененная редакция, Изм. № 2).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

 РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР

РАЗРАБОТЧИКИ

Н.П. Лякишев, Г.В. Козина, Н.С. Белоусова, Т.В. Титова

- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 23.09.82 № 3731
- 3. B3AMEH FOCT 17051-71
- 4. Стандарт полностью соответствует СТ СЭВ 2882-81
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД,	Номер пункта, под-	Обозначение НТД,	Номер пункта, под-
на который дана	пункта, перечисле-	на который дана	пункта, перечисле-
ссылка	ния, приложения	ссылка	ния, приложения
FOCT 83—79 FOCT 1942—86 FOCT 3118—77 FOCT 3760—79 FOCT 3773—72 FOCT 4204—77 FOCT 4461—77 FOCT 4518—75 FOCT 4523—77	3.2 2.2 3.2 3.2 3.2 2.2, 3.2 2.2, 3.2 2.2 3.2	ΓΟCT 5712—78 ΓΟCT 6552—80 ΓΟCT 7172—76 ΓΟCT 10484—78 ΓΟCT 10690—73 ΓΟCT 10929—76 ΓΟCT 24104—88 ΓΟCT 28473—90	2.2, 3.2 3.2 3.2 2.2, 3.2 3.2 2.2 2.2 1.1

- Ограничение срока действия снято по Протоколу Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 2—93)
- 7. ПЕРЕИЗДАНИЕ (июнь 1997 г.) с Изменениями № 1, 2, утвержденными в мае 1987 г., феврале 1993 г. (ИУС 8-87, 11-12-93)

Редактор В.Н. Конысов
Технический редактор В.Н. Прусакова
Корректор Н.Л. Шнайдер
Компьютерная верстка С.В. Рябовой

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 03.07.97. Подписано в печать 12.08.97. Усл.печ.л. 0,70. Уч.-изд.л. 0,65. Тираж 140 экз. С784. Зак. 573.

ИПК Издательство стандартов, 107076, Москва,
Колодеоный пер., 14.
Набрано в Издательстве на ПЭВМ
Филиал ИПК Издательство стандартов — тип. "Московский печатник",
Москва, Лялин пер., 6
Плр № 080102

