МАРГАНЕЦ МЕТАЛЛИЧЕСКИЙ И МАРГАНЕЦ АЗОТИРОВАННЫЙ

методы определения кремния

Издание официальное

ГОССТАНДАРТ РОССИИ Москва

Предисловие

1 РАЗРАБОТАН Российской Федерацией Техническим Комитетом ТК 8 «Ферросплавы»

ВНЕСЕН Техническим секретариатом Межгосударственного Совета по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации 17 февраля 1993 г. За принятие проголосовали:

Навыенование (осударства	Наименование вызвонального, органа по станспертизации		
Республика Армения Республика Беларусь Республика Казахстан Республика Мопдова Российская Федерация Туркменистан Республика Узбекистан Украина	Армгосстандарт Белстандарт Казглавстандарт Молдовастандарт Госстандарт России Туркменстандарт Узгосстандарт Госстандарт		

3 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 28.11.94 № 290 межгосударственный стандарт ГОСТ 16698.5—93 Марганец металлический и марганец азотированный. Методы определения кремния введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 01.07.95

4 Взамен ГОСТ 16698.5-71

О Издательство стандартов, 1995.

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

FOCT 16698.5-93

СОДЕРЖАНИЕ

. 1
2
_
. 2
_ 7
. 2
, 3
. 6
. 6
6
. 6

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МАРГАНЕЦ МЕТАЛЛИЧЕСКИЙ И МАРГАНЕЦ АЗОТИРОВАННЫЙ

Методы определения кремния

Metallic manganese and nitrated manganese. Methods for determination of silicon

Лата введения 1995-07-01

1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт устанавливает методы определения кремния в металлическом и азотированном марганце: фотометрический при массовой доле его от 0,1 до 2,5 % и гравиметрический при массовой доле его от 0,5 до 2,5 %.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие станпарты:

ГОСТ 83-79 Натрий углекислый. Технические условия

ГОСТ 3118-77 Кислота соляная. Технические условия

ГОСТ 3652—69 Кислота лимонная моногидрат и безводная. Технические условия

ГОСТ 3765—78 Аммоний молибденовокислый. Технические условия

ГОСТ 4144—79 Калий азотнокислый. Технические условия

ГОСТ 4197—74 Натрий азотистокислый. Технические условия

ГОСТ 4204—77 Кислота серная. Технические условия

ГОСТ 4332—76 Калий углекислый — натрий углекислый. Технические условия

ГОСТ 4461-77 Кислота азотная. Технические условия

Излание официальное

1

ГОСТ 9428-73 Кремний (IV) оксид. Технические условия

ГОСТ 9656-75 Кислота борная. Технические условия

ГОСТ 10484—78 Кислота фтористоводородная. Технические условия

ГОСТ 10929—76 Водорода пероксид. Технические условия

ГОСТ 18704—78 Кислота борная. Технические условия

ГОСТ 20490-75 Калий марганцовокислый. Технические условия

ГОСТ 26999—86 Марганец металлический и марганец азотированный. Методы отбора и подготовки проб для химического и физикохимического анализов.

ГОСТ 28473—90 Чугун, сталь, ферросплавы, хром, марганец металлические. Общие требования к методам анализа

3 ОБЩИЕ ТРЕБОВАНИЯ

- 3.1 Общие требования к методам анализа по ГОСТ 28473.
- 3.2 Лабораторная проба должна быть приготовлена в виде порошка с максимальным размером частиц 0,16 мм по ГОСТ 26999.

4 ФОТОМЕТРИЧЕСКИЙ МЕТОД

4.1 Сущность метода

Метод основан на преобразовании желтой кремнемолибденовой гетерополикислоты с последующим восстановлением ее аскорбиновой кислотой до комплексного соединения, окрашенного в синий цвет, и измерении его оптической плотности.

4.2 Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр.

Кислота борная по ГОСТ 9656 или по ГОСТ 18704.

Кислота соляная по ГОСТ 3118, раствор 3 моль/дм3.

Кислота аскорбиновая.

Кислота лимонная по ГОСТ 3652.

Калий углекислый — натрий углекислый по ГОСТ 4332.

Натрия перекись.

Аммоний молибденово-кислый по ГОСТ 3765 (перекристаллизованный), раствор 50 г/дм³.

Восстановительная смесь, свежеприготовленная: 1 г аскорбиновой кислоты и 5 г лимонной кислоты растворяют в 100 см³ воды.

GDST

3

Водорода пероксид по ГОСТ 10929.

Калий марганцово-кислый по ГОСТ 20490, раствор 1,5 г/дм³.

Натрий углекислый по ГОСТ 83 и раствор 10 г/дм³.

Кремния двуокись по ГОСТ 9428 или натрий кремнефтористый.

Стандартные растворы кремния

Раствор А: 0,22 г прокаленной двуокиси кремния сплавляют в платиновом тигле с 2,5 г калия—натрия углекислого при температуре 800—850 °C в течение 10 мин и выщелачивают плав раствором углекислого натрия. Раствор переносят в мерную колбу вместимостью 1 дм³, доливают до метки раствором углекислого натрия и перемещивают. Хранят в посуде из полиэтилена.

Массовая концентрация кремния в растворе A равна примерно 0,0001 г/см³.

Массовую концентрацию кремния в растворе устанавливают гравимстрическими методами: хлорно-кислотным или серно-кислотным с двойным выпариванием.

Раствор Б: 10,0 см³ раствора А помещают в мерную колбу вместимостью 100 см³, доливают до метки раствором углекислого натрия и перемещивают; готовят перед применением.

Массовая концентрация кремния в растворе Б равна примерно 0,00001 г/см³.

Или

Раствор А: 1,6738 г кремнефтористого натрия растворяют в тефлоновом стакане в воде без нагревания, переносят в мерную колбу вместимостью 1 дм³, доливают водой до метки и перемешивают; готовят перед применением.

Раствор хранят в полиэтиленовой посуде.

Массовая концентрация кремния в растворе А равна 0,00025 г/см³. Раствор Б: 20,0 см³ раствора А переносят в мерную колбу вмести-

мостью 500 см³, доливают водой до метки и перемещивают. Массовая концентрация кремния в растворе Б равна

- 0,00001 г/см³. 4.3 Проведение анализа
- 4.3.1 Навеску пробы массой 0,5 г (при массовой доле кремния от 0,1 до 0,8 %) или 0,2 г (при массовой доле кремния св. 0,8 до 2,0%), или 0,1 г (при массовой доле кремния св. 2,0 до 2,5 %) помещают в платиновый тигель, смещивают с 2,5 г смеси для сплавления и сплавляют в муфельной печи при температуре 900—950°С в течение 10 мин.

Или:

Навеску пробы массой 0,5 г (при массовой доле кремния от 0,1 до 0,8 %) или 0,2 г (при массовой доле св. 0,8 до 2,0 %), или 0,1 г (при массовой доле кремния св. 2,0 до 2,5 %) помещают в стеклоуглеродистый тигель, прибавляют 1 г калия — натрия углекислого и 2 г пероксида натрия, перемещивают и сплавляют в муфельной печи при температуре 560—580 °C в течение 10 мин.

4.3.2 Охлажденный тигель с плавом, полученным по 4.3.1, помещают в полиэтиленовый стакан, приливают 80 см³ горячего раствора соляной кислоты и нагревают на водяной бане до растворения плава. Тигель удаляют из стакана и обмывают водой. Для разрушения двуокией марганца прибавляют несколько капель раствора пероксида водорода и энергично перемешивают. Избыток пероксида водорода связывают несколькими каплями раствора марганцово-кислого капия. Содержимое стакана охлаждают, переносят в мерную колбу вместимостью 250 см³, доливают водой до метки и персмещивают.

Аликвотную часть раствора 5,0 см³ помещают в мерную колбу вместимостью 100 см³, приливают 50 см³ воды и 5,0 см³ раствора молибденово-кислого аммония, перемешивают и через 10 мин приливают 5,0 см³ восстановительной смеси, а затем доливают водой до метки и перемешивают. Через 20 мин измеряют оптическую плотность анализируемого раствора на спектрофотометре при длине волны 830 нм или на фотоэлек гроколориметре в диапазоне длин волн от 640 до 900 нм. В качестве раствора сравнения применяют воду.

После вычитания значения оптической плотности раствора контрольного опыта из значения оптической плотности раствора пробы находят массу кремния по градуировочному графику или методом сравнения со стандартным образцом с химическим составом, соответствующим требованиям настоящего стандарта, и проведенным через все стадии анализа.

4.3.3 Построение градуировочного графика

В восемь мерных колб вместимостью 100 см³ отбирают 1,0; 2,0; 3,0; 4,0; 5,0; 6,0; 7,0 и 8,0 см³ стандартного раствора Б, что соответствует 0,00001; 0,00002; 0,00003; 0,00004; 0,00005; 0,00006; 0,00007 и 0,00008 г кремния. В девятую колбу стандартный раствор не вводят.

Во все колбы приливают по 1,5 см³ раствора соляной кислоты, 50 см³ воды, 5,0 см³ раствора молибденово-кислого аммония, перемещивают и через 10 мин приливают 5,0 см³ восстановительной смеси, затем доливают водой до метки. Через 20 мин измеряют оптическую

плотность, как указано в п. 4.3.1. Раствором сравнения служит раствор, не содержащий стандартного раствора кремния.

По полученным значениям оптических плотностей и соответствующим им массам кремния строят градуировочный график.

- 4.4 Обработка результатов
- 4.4.1 Массовую долю кремния X, %, определяемую по градуировочному графику, вычисляют по формуле

$$X = \frac{m_1}{m} \cdot 100, \qquad (1)$$

где m_1 — масса кремния, найденная по градуировочному графику, г;

- м масса навески, соответствующая аликвотной части раствора пробы, г.
- 4.4.2 Нормы точности и нормативы контроля точности определения массовой доли кремния приведены в таблице 1.
- 4.4.3 Массовую долю кремния X_1 , %, определяемую методом сравнения, вычисляют по формуле

$$X_{1} = \frac{\hat{A} \cdot (D - D_{1})}{D_{2} - D_{1}},$$
(2)

где \hat{A} — аттестованное значение массовой доли кремния в стандартном образце, \mathcal{R} ,

О — оптическая плотность раствора пробы;

 D_1 — оптическая плотность раствора контрольного опыта;

 D_2 — оптическая плотность раствора стандартного образца.

Таблица 1 — Нормы точности и нормативы контродя точности

		Попускаемые раскозицения, %			
Массовая доля марганца, %	Погрешность результатов анализв д., %	пнух средних репультатов, амализа, амариям вы- пративенных в разгручных условиях d _g	лаук па- раллежных определе- ний з';	tpes na- palmelassas: outpeatene- mail d ₃	. результатов анализа стан- зартного , образца и эт- тестованного значения й
От 0,1 до 0,2 вилюч. Са. 0,2 » 0,5 » » 0,5 » 1,0 » » 1,0 » 2,5 »	0,02 0,04 0,05 0,07	0,03 0,04 0,06 0,09	0,02 0,04 0,05 0,08	0,03 0,04 0,06 0,09	0,01 0,02 0,03 0,05

5 ГРАВИМЕТРИЧЕСКИЙ МЕТОД

5.1 Сущность метода

Метод основан на выделении из хлорно-кислого раствора кремния в виде кремниевой кислоты, прокаливании ее до диоксида кремния и удалении в виде тетрафторида кремния.

5.2 Аппаратура, реактивы и растворы

Кислота соляная по ГОСТ 3118 и раствор 1:1, 1:50.

Кислота хлорная плотностью 1,5 г/см3.

Кислота азотная по ГОСТ 4461.

Кислота фтористоводородная по ГОСТ 10484.

Кислота серная по ГОСТ 4204, раствор 1:1.

Калий азотно-кислый по ГОСТ 4144, раствор 100 г/дм3.

Натрий азотисто-кислый по ГОСТ 4197, раствор 100 г/дм3.

5.3 Проведение анализа

Навеску пробы массой 2 г (при массовой доле кремния от 0,5 до 1,0 %) или 1 г (при массовой доле кремния св. 1,0 до 2,5 %) помещают в стакан вместимостью 400 см³ и растворяют в 15—30 см³ раствора соляной кислоты (1:1) и 5 см³ азотной кислоты при нагревании.

После растворения навески снимают со стакана часовое стекло, прибавляют к раствору 20—30 см³ хлорной кислоты и выпаривают до появления густых паров хлорной кислоты. Стакан накрывают часовым стеклом и нагревают раствор в течение 15—20 мин таким образом, чтобы хлорная кислота конденсировалась на часовом стекле и в верхней части стенок стакана, а затем стекала в раствор анализируемой пробы.

После охлаждения добавляют в стакан 10 см³ соляной кислоты, перемешивают, нагревают, добавляют по каплям раствор нитрита калия или натрия до просветления раствора, затем добавляют 150 см³ горячей воды и нагревают до полного растворения солей. Осадок отфильтровывают на беззольный фильтр средней плотности с добавлением фильтробумажной массы, промывают сначала 5—6 раз горячим раствором соляной кислоты (1:50), а затем 4—5 раз горячей водой.

Фильтр с осадком сохраняют. Фильтрат и промывную жидкость собирают в стакан и выпаривают до появления паров хлорной кислоты, а затем нагревают в течение 20 мин, далее проводят все операции, как указано выше.

Оба фильтра с осадком помещают в платиновый тигель, высуши-

вают, озоляют и прокаливают осадок в течение 40 мин в муфельной печи при температуре (1000±25) °C. Тигель с осадком охлаждают в эксикаторе и взвешивают. Осадок смачивают несколькими каплями воды, добавляют 3—5 капель раствора серной кислоты и 5 см³ фтористоводородной кислоты.

Содержимое тигля выпаривают досуха, а затем прокаливают при температуре (1000±25) *С в течение 20 мин. Тигель с остатком охлаждают в эксикаторе и взвещивают.

- 5.4 Обработка результатов
- 5.4.1 Массовую долю кремния Х2, %, вычисляют по формуле

$$X_2 = \frac{\{(m_1 - m_2) - (m_2 - m_4)\} \cdot 0,4674}{m} \cdot 100,$$
 (3)

- где m_1 масса тигля с осадком диоксида кремния до обработки фтористоводородной кислотой, г;
 - т. масса тигля с остатком после обработки фтористоводородной кислотой, г;
 - ту масса тигля с осадком контрольного опыта до обработки фтористоводородной кислотой, г;
 - m₄ масса тигля с остатком контрольного опыта после обработки фтористоводородной кислотой, г;
- 0,4674 коэффициент пересчета диоксида кремния на кремний;
 - т масса навески пробы, г.

УДК 669,74:006.354

B19

OKCTY 0809

Ключевые слова: мартанец металлический, мартанец азотированный, аппаратура, реактивы, растворы, метод определения, кремний

> Редактор И. В. Виноградская Технический редактор О. Н. Власова Корректор В. И. Варенцова Оператор Т. В. Александрова

Сдаще в набор 26.12.94. Подписано в печать 31.01.95. Усл. деч. э. 0.70 Усл. кр.-отг. 0.70 Уч.-изг. л. 0.51 Тираж 447 экс. С 2064. Зак 2634.

Ораска «Знак Почета» Индосименно стандартов, 197078, Москва, Колодарный вир., 14. Набрано в Калуалкой тейография стандартов на 17998М. Калуализа почетрафия стандартов, ул. Московсках, 256. ГОЗР № 640158