МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

НЕФТЕПРОДУКТЫ ТЕМНЫЕ

Ускоренный метод определения серы

ΓΟCT 1437-75

Dark petroleum products. Accelerated method for determination of sulphur

MKC 75.080 OKCTY 0209

Дата введения 01.01.77

Настоящий стандарт устанавливает ускоренный метод определения массовой доли серы не менее 0,1 % в темных нефтепродуктах, включая масла и остаточные нефтепродукты, а также нефти, кокс и серосодержащие присадки.

Сущность метода заключается в сжигании нефтепродукта в струе воздуха, улавливании образующихся сернистого и серного ангидридов раствором перекиси водорода с серной кислотой и титровании раствором гидроокиси натрия.

Стандарт не распространяется на присадки, содержащие металлы, фосфор и хлор, а также на масла с этими присадками.

1. АППАРАТУРА, РЕАКТИВЫ И МАТЕРИАЛЫ

Аппарат для определения массовой доли серы, в который входят:

печь электрическая трубчатая горизонтальная длиной не менее 130 мм, внутренним диаметром 25—30 мм, с нихромовой обмоткой, обеспечивающей температуру нагрева 900—1000 °C, или печь электрическая трубчатая для микроанализа органических соединений, с термопарой ПП-1, разъемная СУОЛ-0,25.1,1/12 MP, обеспечивающая нагрев до 1200 °C;

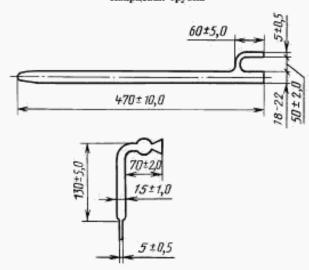
автотрансформатор лабораторный типа ЛАТР-1М или типа ЛАТР-2М, или типа АО СН по ТУ 16—671.025—84, или другого аналогичного типа;

милливольтметр по ГОСТ 9736 с градуировкой XA, с диапазоном измерения от 0 до 1100 °C или с градуировкой ПП-1, с диапазоном измерения от 0 до 1300 °C, или потенциометр по ГОСТ 3044° с градуировкой XA, с диапазоном измерения от 0 до 1100 °C;

термопара типа ТХА (хромель-алюмель) или типа ТПП (платина-платинородий); насос водоструйный:

воздуходувка или компрессор лабораторный, или общая магистраль для нагнетания воздуха; реометры стеклянные лабораторные по ГОСТ 9932 типа РКС или любое другое измеряющее устройство с пределами измерения от 0 до 1,0 дм³/мин;

трубка кварцевая с кварцевым коленом (черт. 1);


Издание официальное

Перепечатка воспрещена

На территории Российской Федерации действует ГОСТ Р 8.585—2001.

Кварцевая трубка

Черт: 1

склянки для очистки воздуха вместимостью не менее 250 см³;

допускается использовать прибор типа ПОСТ;

цилиндры измерительные или мензурки вместимостью 50, 250 см³ по ГОСТ 1770;

пипетки с делениями вместимостью 5 и 10 см³, бюретки вместимостью 5 и 10 см³ с ценой деления 0,02 см³, бюретки вместимостью 25 см³ с ценой деления 0,1 см³ любого типа по ГОСТ 29227, ГОСТ 29251;

колбы конические стеклянные лабораторные по ГОСТ 25336, вместимостью 250 см³; трубки хлоркальциевые любого типа;

посуда лабораторная. Лодочки фарфоровые типа ЛС № 1 или 2 по ГОСТ 9147; допускается применять кварцевые лодочки тех же размеров; ступка с пестиком. Стакан фарфоровый;

капельницы лабораторные стеклянные по ГОСТ 25336;

груша резиновая;

микрошпатель металлический;

набор сит с отверстиями размером от 0,10 до 0,25 мм;

водорода перекись (пергидроль) по ГОСТ 10929 или по ГОСТ 177 медицинская или техническая, марки A и Б;

смешанный кислотно-основной индикатор (метиловый красный и метиленовый голубой), готовят по ГОСТ 4919.1;

фенолфталеин (индикатор) по ТУ 6—09—5360, спиртовой раствор с массовой долей 1 % тотовят по ГОСТ 4919.1;

калий марганцовокислый по ГОСТ 20490, х. ч. или ч. д. а., раствор молярной концентрации c (1/5 KMnO₄=0,1 моль/дм³ (0,1 н.), готовят по ГОСТ 25794.2;

калий йодноватокислый кислый по ГОСТ 8504, х. ч. или ч. д. а., или калий фталевокислый кислый х. ч. или ч. д. а.;

кальций хлористый плавленый;

аскарит ч. или известь натронная;

спирт этиловый ректификованный технический по ГОСТ 18300, высший сорт или спирт технический этиловый по ГОСТ 17299, марки А;

вата медицинская гигроскопическая по ГОСТ 5556;

шамот с частицами размером более 0,1 мм, прокаленный при 900-950 °C;

вода дистиллированная рН 5,4-6,6;

кислота серная по ГОСТ 4204, х. ч. или ч. д. а., молярные растворы концентраций c (1/2 H_2SO_4)= = 1 моль/дм³ (1 н.), готовят по ГОСТ 25794.1, и c (1/2 H_2SO_4) = 0,02 моль/дм³ (0,02 н.);

натрия гидроокись по ГОСТ 4328, х. ч. или ч. д. а., концентрированный раствор, готовят по п. 2.1.1, и раствор молярной концентрации с (NaOH) = 0,02 моль/дм³ (0,02 н.);

масло вазелиновое медицинское по ГОСТ 3164 или любое маловязкое минеральное масло, проверенное на отсутствие серы;

весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г 2-го класса точности;

колбы мерные вместимостью 1 дм3 по ГОСТ 1770;

кислота соляная по ГОСТ 3118, х. ч. или ч. д. а., раствор молярной концентрации c (HCl) = $= 1 \text{ моль/дм}^3$ (1 н.).

Допускается готовить растворы, используя стандарт-титры (фиксаналы) в ампулах.

Допускается применять импортную аппаратуру, посуду по классу точности и реактивы с квалификацией чистоты не ниже указанных в стандарте.

(Измененная редакция, Изм. № 1, 2, 3).

2. ПОДГОТОВКА К АНАЛИЗУ

2.1. Приготовление 0,02 моль/дм³ (0,02 н.) раствора гидроокиси натрия 2.1.1. В фарфоровом стакане в 100 см³ воды растворяют 100 г гидроокиси натрия. После охлаждения раствора до комнатной температуры его переносят в стеклянную или полиэтиленовую емкость, закрывают резиновой или полиэтиленовой пробкой и в течение 2—3 недель выдерживают до полного осаждения углекислого натрия. Полученный раствор декантируют и берут для анализа верхний прозрачный слой.

(Измененная редакция, Изм. № 3).

2.1.2. Кислый йодноватокислый калий дважды перекристаллизовывают, для этого готовят насыщенный водный раствор при 60 °C. Раствор в горячем состоянии фильтруют, затем охлаждают в бане, наполненной водой со льдом. Выделившиеся кристаллы отделяют и сущат при 95—100 °C до постоянной массы. Перекристаллизованный кислый йодноватокислый калий хранят в темной посуде в темноте.

При отсутствии кислого йодноватокислого калия молярную концентрацию (нормальность) можно устанавливать по кислому фталевокислому калию. Реактив предварительно перекристаллизовывают при температуре не ниже 25 °C во избежание образования кристаллов трифталата калия. Полученные кристаллы сущат до постоянной массы при 110—115 °C.

(Измененная редакция, Изм. № 1).

2.1.3. В отстоявшемся прозрачном концентрированном растворе (п. 2.1.1) устанавливают содержание гидроокиси натрия по плотности (с применением таблиц) или титрованием. При титриметрическом определении 1 см³ раствора доводят водой до 40 см³ и титруют раствором серной или соляной кислот концентрации 1 моль/дм³.

1 см³ раствора серной кислоты молярной концентрации точно c (1/2 H_2SO_4) = 1 моль/дм³ или соляной кислоты молярной концентрации точно c (HCl) = 1 моль/дм³ соответствует 0,04 г гидроокиси натрия.

Для приготовления раствора гидроокиси натрия концентрации 0,1 моль/дм³ в мерную колбу вместимостью 1 дм³ помещают рассчитанный в соответствии с приложением объем концентрированного раствора, содержащего 4,0 г гидроокиси натрия, доводят объем раствора до метки дистиллированной водой, не содержащей углекислоты, и перемешивают.

Дистиллированную воду, не содержащую углекислоту, готовят по ГОСТ 4517.

(Измененная редакция, Изм. № 3).

2.1.4. Коэффициент поправки раствора гидроокиси натрия концентрации 0,1 моль/дм³ определяют по кислому йодноватокислому калию или кислому фталевокислому калию.

В три конические колбы помещают 0,420—0,525 г кислого йодноватокислого калия или по 0,4 г кислого фталевокислого калия, взвешенного с погрешностью не более 0,0002 г, растворяют в 35 см³ горячей воды. После охлаждения добавляют при использовании кислого йодноватокислого калия 8 капель смешанного индикатора (метиловый красный и метиленовый голубой) и титруют до перехода фиолетовой окраски раствора в ярко-зеленую, а при использовании кислого фталевокислого калия добавляют 3—4 капли фенолфталеина и титруют до появления слабо-розовой окраски, устойчивой в течение 30 с (без перемешивания).

Примечания:

- Верхний конец бюретки должен быть защищен хлоркальциевой трубкой, заполненной аскаритом или натронной известью и хлористым кальцием.
 - 2. Допускается определять коэффициент поправки раствора едкого натра по янтарной кислоте.

2.1.5. Коэффициент поправки вычисляют по формуле

$$K = \frac{m_3 \cdot 1000}{M_1 \cdot c_1 \cdot V},$$

где m_1 — масса навески установочного вещества (кислого йодноватокислого калия или кислого фталевокислого калия), г;

 М₁ — молярная масса эквивалента установочного вещества (389,91 — для кислого йодноватокислого калия, 204,23 — для кислого фталевокислого калия), г/моль;

с₁ — заданная концентрация вещества в растворе, моль/дм³;

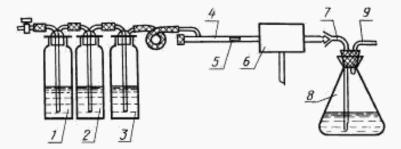
V— объем анализируемого раствора, израсходованный на титрование, см³.

Точную концентрацию (моль/дм3) раствора определяют по формуле

$$c = c_1 \cdot K$$

где К -- коэффициент поправки.

Точная концентрация вещества в растворе выражается четырьмя значащими цифрами после запятой.


Точную концентрацию 0,1 моль/дм³ раствора гидроокиси натрия проверяют не реже одного раза в месяц.

2.1.6. Раствор гидроокиси натрия концентрации 0,02 моль/дм³ готовят из 0,1 моль/дм³ раствора гидроокиси натрия (п. 2.1.3) разбавлением дистиллированной водой в соотношении 1:5.

Разбавленный раствор гидроокиси натрия концентрации 0,02 моль/дм³ применяют свежеприготовленным. Устойчивость раствора — 8 ч.

- 2.1.4—2.1.6. (Введены дополнительно, Изм. № 3).
- 2.2. Подготовка аппаратуры
- 2.2.1. Собирают систему (черт. 2) для очистки воздуха. Для этого первую склянку заполняют приблизительно на половину объема 0,1 моль/дм³ раствором марганцовокислого калия, вторую концентрированным раствором гидроокиси натрия и третью ватой и соединяют их последовательно резиновой трубкой. В приемник наливают 150 см³ воды, 5 см³ пергидроля и 7 см³ 0,01 моль/дм³ (0,02 н.) раствора серной кислоты. Приемник закрывают резиновой пробкой, снабженной кварцевым коленом и отводной трубкой. Колено присоединяют с помощью шлифа к кварцевой трубке, которую устанавливают горизонтально в печи. Другой конец трубки закрывают резиновой прокладкой и через боковой отросток присоединяют к очистительной системе, соединенной с приспособлением для нагнетания воздуха. Перед очистительной системой устанавливают устройство для измерения скорости потока воздуха.

(Измененная редакция, Изм. № 1, 3).

I— склянка с марганцовокислым каляем; 2— склянка с 40 %-ным раствором гидроокиси натрия; 3— склянка с тигроскопической ватой; 4— кварцевая трубка; 5— лодочка; δ — электронечь; 7— кварцевое колено; 8— приемник; 9— отводная

2.2.2. Перед проведением анализа собранный аппарат проверяют на герметичность. Для этого отводную трубку приемника присоединяют к водоструйному насосу, через всю систему просасывают воздух и закрывают кран на отводной трубке очистительной системы. При этом не должно появляться пузырьков воздуха в приемнике и очистительной системе. В случае негерметичности системы все места соединений обрабатывают мыльной водой, находят место пропуска и устраняют его.

- 2.2.3. Одновременно включают печь и постепенно нагревают ее до 900—950 °С. Для регулирования и измерения температуры нагрева печи включают автотрансформатор и вставляют в печь термопару так, чтобы ее спай находился в середине печи, концы термопары присоединяют к измерительному прибору.
- Прибор типа ПОСТ настраивают и эксплуатируют в соответствии с инструкцией по эксплуатации и техническим описанием прибора,

(Измененная редакция, Изм. № 1).

3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. Анализируемый нефтепродукт взвешивают с погрешностью не более 0,0002 г в фарфоровой лодочке, на дно которой помещено небольшое количество шамота. Навеску равномерно распределяют по всей лодочке. Массу анализируемого вещества берут по табл. 1.

Таблипа 1

Предполагиемое содержание серы и нефтепродукте, %	Масса навески, т
Менее 2	0,2-0,1
2—5	0,1-0,05

Если в анализируемом нефтепродукте содержится более 5 % серы, то его предварительно разбавляют медицинским или любым маловязким минеральным маслом, проверенным на отсутствие серы так, чтобы содержание серы не превышало 5 %:

Примечание. При анализе высокосернистых продуктов (с содержанием серы более 5 %) вместо разбавления допускается взятие навесок на микровесах менее 0,03 г с погрешностью не более 0,00003 г.

При анализе нефтяного кокса пробу подготавливают по ГОСТ 16799 с последующим измельчением в ступке.

При анализе нефтей навеску беруг в количестве 0,05-010 г.

3.2. Массу нефтепродукта в лодочке засыпают предварительно просеянным и прокаленным шамотом (массу кокса шамотом не засыпают) и помещают в кварцевую трубку перед входом в печь. Трубку быстро закрывают пробкой и пропускают через систему воздух со скоростью около 0,5 дм³/мин, измеряя скорость подачи воздуха с помощью реометра или другого измеряющего устройства.

Сжигание нефтепродукта проводят при 900—950 °C в течение 30—40 мин, а для летучих продуктов (нефтей) и продуктов, содержащих 50 % и более ароматических соединений, в течение 50—60 мин, постепенно передвигая трубку с лодочкой вдоль печи, не давая продукту воспламеняться. После этого трубку с лодочкой помещают в центральную, наиболее раскаленную часть печи, где ее прокаливают еще в течение 15 мин.

- 3.3. По окончании сжигания трубку с лодочкой постепенно в течение 10—15 мин отодвигают в обратном направлении, отсоединяют приемник от трубки и промывают кварцевое колено 25 дм³ дистиллированной воды, сливая ее в приемник. Содержимое приемника титруют 0,02 моль/дм³ (0,02 н.) раствором гидроокиси натрия в присутствии 8 капель смещанного индикатора до перехода фиолетовой окраски раствора в ярко-зеленую. Если продукт содержит более 2 % серы, то для титрования применяют бюретку вместимостью на 25 см³.
 - 3.1-3.3. (Измененная редакция, Изм. № 1, 3).
- Перед анализом проб нефтепродуктов проводят контрольный опыт в тех же условиях (по пп. 3.2—3.3, но без навески нефтепродукта).

(Измененная редакция, Изм. № 3).

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

Массовую долю серы (X) в процентах вычисляют по формуле

$$X = \frac{16 \cdot c \cdot (V_1 - V_0) \cdot 100}{1000 \cdot m_1} ,$$

где V₀ — объем раствора гидроокиси натрия, израсходованный на титрование контрольного опыта, см³;

C. 6 FOCT 1437-75

V_I — объем раствора гидроокиси натрия, израсходованный на титрование после сжигания нефтепродукта, см³;

с — молярная концентрация вещества эквивалента, моль/дм³;

16 — эквивалентная масса серы, г:

т.— масса продукта, взятого на анализ, г.

 При разбавлении нефтепродукта маслом массовую долю серы (X₁) в процентах вычисляют по формуле

$$X_1 = \frac{16 \cdot c \cdot (V_1 - V_0) \cdot 100 \cdot m_3}{m_4 \cdot m_5 \cdot 1000} \, ,$$

где m₃— суммарная масса медицинского масла и продукта, взятого на разбавление, г;

та— масса высокосернистого продукта, взятого на разбавление, г;

т. — масса смеси, взятой на анализ, т.

4.1; 4.2. (Измененная редакция, Изм. № 3).

4.3. За результат анализа принимают среднеарифметическое двух последовательных определений. Результат округляют до 0,01 %.

(Измененная редакция, Изм. № 1).

4.4; 4.5. (Исключены, Изм. № 2).

5. ТОЧНОСТЬ МЕТОДА

5.1. Сходимость

Результаты определения, полученные последовательно одним лаборантом, признаются достоверными (при доверительной вероятности 95 %), если расхождение между ними не превышает значения, указанные в табл. 2.

5.2. Воспроизводимость

Результаты анализа, полученные в двух разных лабораториях, признаются достоверными (при доверительной вероятности 95 %), если расхождение между ними не превышает значения, указанные в табл. 2.

Таблица 2

Массован доля серы, %	Сходимость, %	Воспроизводимость, %
До 1,0	0,05	0,20
Св. 1,0 × 2,0	0,05	0,25
× 2,0 × 3,0	0,10	0,30
× 3,0 × 5,0	0,10	0,45

Разд. 5. (Введен дополнительно, Изм. № 2).

ПРИЛОЖЕНИЕ Рекомендуемое

ПРИМЕР РАСЧЕТА КОНЦЕНТРАЦИИ РАСТВОРА ГИДРООКИСИ НАТРИЯ, ПРИГОТОВЛЕННОГО ПО ПП. 2.1.1 И 2.1.3

Допустим, что концентрированный раствор имеет плотность 1,410 г/см³. По таблице находим, что концентрация гидроокиси натрия равна 38 %. Требуется приготовить 1 дм³ раствора c (NaOH) = 0,1 моль/дм³ (0,1 н.).

Грамм-эквивалент гидроокиси натрия равен 40,00.

В мерной колбе в 1 дм 3 дистиллированной воды растворяют 4,00 г гидроокиси натрия (40,00-0,1 = 4,00 г). 100 г концентрированного раствора содержат 38,0 г гидроокиси натрия. Можно определить, в каком количестве раствора (X) содержится 4,00 г гидроокиси натрия.

Составим пропорцию:

100:38,00 = X:4,00, откуда

X = 10.53 r.

Вычисляем объем полученного количества раствора (Х):

 $10,53:1,410 = 7.5 \text{ cm}^3$

В мерную колбу вместимостью 1 дм³ помещают 7,5 см³ концентрированного раствора гидроокиси натрия и доводят до метки дистиллированной водой.

Полученный раствор гидроокиси натрия концентрации c (NaOH) = 0,1 моль/дм² (1 н.) хранят в полиэтиленовых сосудах.

ПРИЛОЖЕНИЕ. (Введено дополнительно, Изм. № 3).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- РАЗРАБОТАН И ВНЕСЕН Министерством нефтеперерабатывающей и пефтехимической промышленности СССР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 19.05.75 № 1342
- ВЗАМЕН ГОСТ 1437—75
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
FOCT 177-88.	1.1
ΓΟCT 1770—74	1.1
TOCT 3044-84	1.1
FOCT 3118-77	1.1
ΓΟCT 3164—78	1,1
FOCT 4204-77	1:1
ΓΟCT 4328—77	1.1
FOCT 4517—87	. 2.1.3:
ΓΟCT: 4919.1—77	1.1
FOCT 5556—81	1.1.
FOCT 8504—71	f.1·
ΓΟCT 9147—80	1.1
FOCT 9736—91	1.1
ΓΟCT: 9932—75	1.1
FOCT 10929—76	1.1
ΓΟCT 16799—79	3.1, примечание
FOCT 17299—78	1.1
ΓΟCT 18300—87	13
FOCT 2049075	1.1
ΓOCT 25336—82	t.t
TOCT 25794.1—83	1.1
FOCT 25794.2—83	1.1
ΓOCT 29227—91	1,1
FOCT 29251—91	1.1
TY 6-09-5360-87	1.1
TV 16-671.025-84	1.1

- Ограничение срока действия снято по протоколу № 2—92 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 2—93)
- ИЗДАНИЕ с Изменениями № 1, 2, 3, утвержденными в мае 1981 г., июне 1987 г., феврале 1993 г. (ИУС 8—81, 9—87, 8—93)

Поправка к ГОСТ 1437—75 Нефтепродукты темные. Ускоренный метод определения серы (см. сб. «Нефтепродукты. Методы анализа. Часть 1»)

В каком месте	Напечатано	Должно быть
Информацион-	Взамен	Взамен
ные данные. Пункт 3	ГОСТ 1437—75	ГОСТ 1437—56

(ИУС № 1 2008 г.)